• Title/Summary/Keyword: 항력계수비

Search Result 85, Processing Time 0.026 seconds

Application of Depth-averaged 2-D Numerical Model for the Evaluation of Hydraulic Effects in River with the Riparian Forest (하안림 영향 검토를 위한 수심평균 2차원 수치모형 적용)

  • Kim, Ji Sung;Kim, Won;Kim, Hyea Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.165-173
    • /
    • 2011
  • In this study, FESWMS FST2DH model was used to analyze the change of flow characteristics after making the riparian forest. The additional flow resistance is calculated based on the drag-force concept acting on each tree and the lateral momentum transfer between planted and non-planted zone could be satisfactorily reproduced by parabolic turbulence model in this depth-averaged 2-D numerical model. For model validation, the simulated velocities were compared with the measured data, showing good agreement in both tree density cases of experiments. The previous method using a proper Manning's n coefficient gives reasonable solutions only to evaluate the conveyance, but the calculated approach velocity at each tree was different from realistic value. The proposed procedure could be widely used to evaluate hydraulic effects of riparian trees in practical engineering.

Reflection of Porous Wave Absorber Using Quasi-linear Numerical Model (준선형 수치모델을 이용한 투과성 소파장치의 반사율)

  • Ko, Chang-hyun;Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In present study, we suggested the quasi-linear model that linearizes the quadratic drag representing the energy loss across the porous plate. The quasi-linear model was solved by Boundary Element Method (BEM) for development of the porous wave absorber suitable for 2-D wave tank. The drag coefficient at the porous plate was newly obtained through comparison of experimental results. It is found that the porous wave absorber with porosity 0.1, submergence depth d/h = 0.1, and inclined angle $10^{\circ}{\leq}{\theta}{\leq}20^{\circ}$ shows the effective wave absorption. Using the developed quasi-linear numerical model, the optimal design of various types of a porous wave absorber will be applied.

Aerodynamic Analysis Based on the Truncation Ratio of Guided-Weapon Nose Using CFD (전산유체역학을 이용한 유도무기 선두부 절단 비율에 대한 공력해석)

  • Jeong, Kiyeon;Kang, Dong-Gi;Lee, Daeyeon;Noh, Gyeongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.245-255
    • /
    • 2019
  • This paper describes on aerodynamic analysis based on the truncation rate of guided-weapon nose using computational fluid dynamics. The shape to perform the analysis is only the body of the guided weapon and the diameter to length ratio is 10.7. Three nose shapes were selected and hemisphere, 25% and 50% truncation were compared. For the accurate CFD analysis of the body, the grid method and the analytical method were selected and verified using NASA wind tunnel test data. For the three nose shapes, the drag analysis for the flight Mach number is 6~20% different. This difference was analyzed by the pressure distribution from nose to base.

Numerical Simulation of Turbulent Flow in n Wavy-Walled Channel (파형벽면이 있는 채널 내의 난류유동에 대한 수치해석)

  • Park, Tae-Seon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.655-667
    • /
    • 2003
  • Turbulent flow over a fully-developed wavy channel is investigated by the nonlinear $k-\varepsilon-f_\mu$ model of Park et al.(1) The Reynolds number is fixed at $Re_{b}$ = 6760 through all wave amplitudes and the wave configuration is varied in the range of $0\leq\alpha/\lambda\leq0.15$ and $0.25\leq{\lambda}/H\leq4.0$. The predicted results for wavy channel are validated by comparing with the DNS data of Maa$\beta$ and Schumann(2) The model performance Is shown to be generally satisfactory. As the wave amplitude increases, it is found that the form drag grows linearly and the friction drag is overwhelmed by the form drag. In order to verify these characteristics, a large eddy simulation is performed for four cases. The dynamic model of Germane et al.(3) is adopted. Finally, the effects of wavy amplitude on separated shear layer are scrutinized.

Analysis of Tree Roughness Evaluation Methods Considering Depth-Dependent Roughness Coefficient Variation (수심별 조도계수 변화를 고려한 수목 조도공식 특성 분석)

  • Du Han Lee;Dong Sop Rhee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.51-63
    • /
    • 2023
  • Riverine tree management is crucial in realizing a balance between flood control and ecological preservation, which requires an accurate assessment of the impact of trees on river water elevations. In this study, eight different formulas for evaluating vegetation roughness considering the drag force acting on trees, were reviewed, and the characteristics and applicability of these methods were evaluated from a practical engineering perspective. The study compared the characteristics of vegetation roughness measurement methods for calculated roughness coefficients at different water depths and analyzed factors such as effects of tree canopy width, tree density and diameter, and tree stiffness coefficient, and water level estimation results. A comparison of roughness coefficients at the same water depths revealed that the Kouwen and Fathi-Moghadam formulas and the Fischenich formula yield excessive drag coefficients compared to other formulas. Factors such as channel geometry, tree diameter, and tree density showed varying trends depending on the formula but did not exhibit excessive outliers. Formulas considering the tree stiffness coefficient, such as the Freeman et al.'s formula and the Whittaker et al.'s formula, showed significant variations in drag coefficients depending on the stiffness coefficient. When applied to small- and medium-sized virtual rivers in South Korea using the drag coefficient results from the eight formulas, the results indicated a maximum increase in water level of approximately 0.2 to 0.4 meters. Based on this review, it was concluded that the Baptist et al., Huthoff et al., Cheng, Luhar, and Nepf's formulas, which exhibit similar characteristics and low input data uncertainties, are suitable for practical engineering applications.

Numerical Study about the Effect of Continuous Blowing On Aerodynamic Characteristics of NACA 0015 Airfoil (연속적 블로잉에 따른 NACA 0015 익형 공력특성 변화에 대한 수치적 연구)

  • Choe, Seong-Yun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.1-11
    • /
    • 2006
  • The effects of continuous blowing on flow control and stall suppression for flows over a NACA 0015 airfoil at low Reynolds numbers were numerically investigated through its parameter variation on unstructured meshes. The aerodynamic force and moment variations due to flow control were examined, along with the stall angle-of-attack change for stall suppression. The results showed that blowing with relatively strong jet increases lift at the cost of drag increment below stall angle. Continuous blowing delays flow stall when it is implemented near the leading edge. When the blowing jet was aligned along the flow direction on the airfoil, the favorable flow control effect was most significant below the stall angle of attack.

An experimental study on reefing effect on aerodynamics characteristics of cruciform parachute (십자형 낙하산의 Reefing 효과에 따른 공력특성에 관한 실험연구)

  • Lee, Chang-Gu;Kim, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.628-633
    • /
    • 2008
  • Cruciform parachute has advantage in manufacture and expanse compare with circular parachute. But it has disadvantage in stability. Wind tunnel test were conducted to investigate the effects of reefing-line on the cruciform parachutes with the purpose of finding aerodynamics characteristics of the parachute such as drag coefficient, normal force coefficient. Aerodynamics characteristics are measured accurately with 6-components pyramidal balance and load cells which were installed in the fixed-body. Four different models were tested and the test results were compared with each other. The aerodynamics characteristics were changed with reefing-line length. Separation edge was developed due to reefing-line also it made increasing of the stability. The cruciform parachute which improve stability is supposed to be used in variety purpose.

CFD Analysis of EFD-CFD Workshop Case 3 using Commercial and Open Source CFD codes (상용 및 오픈소스 CFD 코드를 이용한 EFD-CFD 워크샵 Case 3 해석)

  • Kim, Jong Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.241-251
    • /
    • 2017
  • Computational fluid dynamics analysis was performed for the case 3 of the EFD-CFD workshop. Solvers were used for three commercial CFD codes(Star-CCM+, Fluent and CFX) and an open source CFD code(SU2). The grid were generated four types depending on the total cells using commercial grid generation code(Pointwise). Mach number of 0.4 and 0.8, 2 degree angle of attack and Mach number of 0.9, 1 degree angle of attack were calculated. Similar pressure coefficient curve and normal force coefficient were showed from the coarse grid to fine grid of four codes. But there is a difference in the drag coefficient. The position of the shock wave was predicted forward as the discretization order increased in calculations using Star-CCM+ and Fluent. The computation time to converge, Fluent, Star-CCM +, CFX are in order, and SU2 takes much time to converge.

Aerodynamic Characteristics of Basic Airfoils for Agricultural Helicopter using Wind-tunnel Test and CFD Simulation (풍동실험과 CFD 시뮬레이션을 이용한 농용 헬리콥터 기본 익형의 공력특성 고찰)

  • Won, Yong Sik;Koo, Young Mo;Haider, B.A.;Sohn, Chang Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.54-54
    • /
    • 2017
  • 본 연구는 무인 헬리콥터의 양력을 개선하기 위한 기초 단계로서 V1505A 및 V2008B 기본 두 익형의 400 mm 블레이드 섹션에 해당하는 모델에 대한 풍동실험을 실시하여 양력, 항력 및 동력특성을 분석하고 CFD 시뮬레이션의 결과와 비교하고 검증하였다. 시뮬레이션은 풍동 실험과 유사하게 설정하기 위하여 400 mm 블레이드 섹션의 양 끝을 벽으로 제한하여 3차원 와류현상을 억제하여 모델을 구성하였고, 시뮬레이션의 결과와 비교하여 모델을 검증하였다. 사용된 모델은 로터로부터 $Re=0.32{\times}10^6$ 영역까지는 aminar 모델을 사용하였으며, 그 이후 영역역(>$Re=0.32{\times}10^6$)은 양력 및 저항의 급격한 변화를 올바로 포착할 수 있다는 S-A 모델을 적용하여 확장하였다. 시뮬레이션의 격자는 유동 현상에 있어 박리로 야기된 와류 현상을 관찰하기 위하여 익형 주변에 접하는 부분에 격자를 집중시켰다. 시뮬레이션 방법은 유속은 36~141 m/s 까지 5 수준으로 하였으며, 받음각은 $0{\sim}16^{\circ}$로 7 수준으로 변화 시키면서 공력계수 및 동력을 분석하였다. 양력분석에 있어 익형 V1505A에 비해 익형 V2008B의 특성이 우수하였으나, 익형 V1505A는 실속 이후 양력이 급격히 떨어지지 않고 유지되는 특성을 보였다. 익형 V2008B는 낮은 받음각에서 높은 공력과 낮은 항력을 나타냈다. 동력 분석 결과로 익형 V1505A의 유도동력은 총 동력의 56~72%를 차지하고, 형상동력은 총 동력의 27~43%를 차지하였다. 익형 V2008B는 유도동력은 총 동력의 66~81%를 차지하고, 형상동력은 총 동력의 18~33%를 차지하였다. 익형 V2008B이 익형 V1505A보다 유도동력은 크며, 형상동력은 적게 나와 상대적으로 효율적이라 할 수 있다. 헬리콥터 동력원의 규모는 법률적인 총중량에 의하여 제한되므로 일반적인 농용 소형 무인 헬리콥터 엔진의 사양인 24.5 kW (32PS)를 적용한다면, 익형 V1505A은 받음각 $8{\sim}10^{\circ}$에서 그리고 익형 V2008B은 $7{\sim}9^{\circ}$정도에서 받음각이 제한되며 이때 총 양력은 1200~1300 N 정도로 예상된다.

  • PDF

Blockage Correction Method for Separated Flows over an Aircraft in a Closed Test-Section Wind Tunnel (폐쇄형 풍동 시험부내의 항공기 실속 흐름에 대한 Blockage 보정 기법 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.42-49
    • /
    • 2005
  • A new blockage correction method has been developed for the wall interference correction of closed test-section subsonic wind tunnels based on the nonlinear relationship between separation blockage and separation drag. This method can be applied continuously from the linear lift-slope region to the highly nonlinear post-stall region by on-line processing. The present method was validated by comparing the results with a classical method based on the test results of a bluff body and a measured-boundary-condition method. It was shown that the present method is in good agreement with the measured-boundary-condition method, enabling better wall corrections than the bluff body method in both near-stall and post-stall regions.