• Title/Summary/Keyword: 항공탑재시험

Search Result 251, Processing Time 0.022 seconds

Development of P.P.T CanSat System Applying Energy Harvesting System (에너지 하베스팅 시스템을 적용한 자가발전 P.P.T CanSat 시스템 개발)

  • Chae, Bong-Geon;Kim, Su-Hyeon;Kim, Hye-In;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2018
  • CanSat has being attracted considerable attentions for the use as training purposes owing to its advantage that can implement overall system functions of typical commercial satellites within a small package like a beverage can. So-called P.P.T CanSat (Power Plant Trio Can Satellite), proposed in this study, is the name of a CanSat project which have participated in 2015 domestic CanSat competition. Its main objective is to self-power on a LED and a MEMS sensor module by using electrical energy harvested from solar, wind and piezo energy harvesting systems. This study describes the system design results, payload level function tests, flight test results and lessons learned from the flight tests.

Life Prediction of Failure Mechanisms of the CubeSat Mission Board using Sherlock of Reliability and Life Prediction Tools (신뢰성 수명예측 도구 Sherlock을 이용한 큐브위성용 임무보드의 고장 메커니즘별 수명예측)

  • Jeon, Su-Hyeon;Kwon, Yae-Ha;Kwon, Hyeong-Ahn;Lee, Yong-Geun;Lim, In-OK;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.172-180
    • /
    • 2016
  • A cubesat classified as a pico-satellite typically uses commercial-grade components that satisfy the vibration and thermal environmental specifications and goes into mission orbit even after undergoing minimum environment tests due to their lower cost and short development period. However, its reliability exposed to the physical environment such as on-orbit thermal vacuum for long periods cannot be assured under minimum tests criterion. In this paper, we have analysed the reliability and life prediction of the failure mechanisms of the cubesat mission board during its service life under the launch and on-orbit environment by using the sherlock software which has been widely used in automobile fields to predict the reliability of electronic devices.

A Study on the Improvement of Pitch Autopilot Flight Control Law (세로축 자동조종 비행제어법칙 개선에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Lee, Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1104-1111
    • /
    • 2008
  • The supersonic advanced trainer based on digital flight-by-wire flight control system uses aircraft flight information such as altitude, calibrated airspeed and angle of attack to calculate flight control law, and this information is measured by IMFP(Integrated Multi-Function Probe) equipment. The information has triplex structure using three IMFP sensors. Final value of informations is selected by mid-value selection logic to have more flight data reliability. As the result of supersonic flight test, pitch oscillation is occurred due to IMFP noise when altitude hold autopilot mode is engaged. This tendency may affect stability and handling quality of an aircraft during autopilot mode. This paper addresses autopilot control law design to remove pitch oscillation and these control laws are verified by non-real time simulation and flight test. Also, pitch response characteristics of pitch attitude hold autopilot mode is improved by upgrading the control law structure and feedback gain tuning during bank turn.

Measurement of Radiative Heat Flux of Nozzle Exit (노즐 후방부의 Radiative Heat Flux 측정)

  • An, Won Geun;Park, Hui Ho;Hwang, Su Gwon;Kim, Yu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.87-92
    • /
    • 2003
  • In rocket systems, somtimes special devices or equipments are installed near the nozzle exit area where high temperature and pressure combustion gas flows. To pretect these subsystems from severe thermal environment, it is necessary to have accurate thermal data measured from the experimental liquid rocket firing test. Test variables were combustion pressure (200, 300, 400 psi) and mixture ratio (1.5, 2.0, 2.5) and quartz was used as a heat probe. Measurement technique used in this research can be also applied to measure the radiative heat flux inside the combustion chamber which is important imput data for the liquid rocket regenerative cooling system design.

Thermal Model Correlation and Heater Design Verification for LEO Satellite Optical Payload's Thermal Analysis Model Verification (저궤도 위성 광학탑재체의 열해석 모델 검증을 위한 열모델 보정 및 히터 설계)

  • Kim, Min-Jae;Huh, Hwan-Il;Kim, Sang-Ho;Chang, Su-Young;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1069-1076
    • /
    • 2011
  • All of the satellite components must be operated within the permissible temperature range during the mission in orbit. Therefore, thermal design is performed to develop verified thermal model and to secure thermal stability on the ground. In this study, thermal model correlation was performed to satisfy the criteria of correlation using ground thermal vacuum/thermal balance test results of LEO satellite optical payload. We also secured verified thermal model by controlling operating cycle of flight heaters. In addition, it was confirmed that all components are within the permissible temperature range through conducting orbit environment thermal analysis. We also secured thermal stability of the satellite.

Experimental Verification of Heat Sink for FPGA Thermal Control (FPGA 열제어용 히트싱크 효과의 실험적 검증)

  • Park, Jin-Han;Kim, Hyeon-Soo;Ko, Hyun-Suk;Jin, Bong-Cheol;Seo, Hak-Keum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.789-794
    • /
    • 2014
  • The FPGA is used to the high speed digital satellite communication on the Digital Signal Process Unit of the next generation GEO communication satellite. The high capacity FPGA has the high power dissipation and it is difficult to satisfy the derating requirement of temperature. This matter is the major factor to degrade the equipment life and reliability. The thermal control at the equipment level has been worked through thermal conduction in the space environment. The FPGA of CCGA or BGA package type was mounted on printed circuit board, but the PCB has low efficient to the thermal control. For the FPGA heat dissipation, the heat sink was applied between part lid and housing of equipment and the performance of heat sink was confirmed via thermal vacuum test under the condition of space qualification level. The FPGA of high power dissipation has been difficult to apply for space application, but FPGA with heat sink could be used to space application with the derating temperature margin.

Leader - Follower based Formation Guidance Law and Autonomous Formation Flight Test of Multiple MAVs (편대 유도 법칙 및 초소형 비행체의 자동 편대 비행 구현)

  • You, Dong-Il;Shim, Hyun-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • This paper presents an autonomous formation flight algorithm for micro aerial vehicles (MAVs) and its flight test results. Since MAVs have severe limits on the payload and flight time, formation of MAVs can help alleviate the mission load of each MAV by sharing the tasks or coverage areas. The proposed formation guidance law is designed using nonlinear dynamic inversion method based on 'Leader-Follower' formation geometric relationship. The sensing of other vehicles in a formation is achieved by sharing the vehicles' states using a high-speed radio data link. the designed formation law was simulated with flight data of MAV to verify its robustness against sensor noises. A series of test flights were performed to validate the proposed formation guidance law. The test result shows that the proposed formation flight algorithm with inter-communication is feasible and yields satisfactory results.

Experimental Study for the Safety Analysis of an External Store Separation from Fighter Aircraft (전투기 외부 무장분리 안전성 해석을 위한 풍동실험연구)

  • Yoon, Yong-Hyun;Cho, Hwan-Kee;Chung, Hyoung-Seog;Cho, Dong-Hyun;Lee, Sang-Hyun;Baek, Seung-Woock
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.232-239
    • /
    • 2009
  • The prediction of the separation trajectories of external stores carried by military aircraft is an important task in the area of aircraft design having the objective to define the operational, release envelopes. This paper presents the results obtained for safe store separation from a fighter aircraft by experimental methods in the subsonic wind tunnel. The problems associated with separation of external stores can be studied by the use of several wind-tunnel test techniques. Attention is given the two most useful techniques: 1) dynamically scaled drop-model testing, 2) grid testing. A description of each method is given and data obtained are shown to validate the similarity within acceptable limits.

Development of the Connection Unit with a Gas Gun Installed in a Quadcopter-type Drone (쿼드콥터형 드론에 설치된 가스총 결합유닛의 개발)

  • Jeon, Junha;Kang, Ki-Jun;Kwon, Hyun-Jin;Chang, Se-Myong;Jeong, Jae-Bok;Baek, Jae-Gu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.774-781
    • /
    • 2018
  • In this investigation, a gas gun is proposed driven by carbon dioxide gas and installed on a quadcopter-type small unmanned drone for the purpose of cattle vaccination, and we developed a launcher and its connection unit. The system consists of a commercial drone, a gas gun, a solenoid valve, and the remote communication controller, etc. The velocity of launched projectile is measured, and the full system is finally validated through ground test and flight examination loaded for the real aircraft. The feasibility is checked if this technology is applicable to various disease abatement and hazard mitigation in the fields of agriculture and fire-fighting with the present research and development.

Radio Frequency Interference on the GNSS Receiver due to S-band Signals (S 대역 신호에 의한 위성항법수신기의 RF 신호간섭)

  • Kwon, Byung-Moon;Shin, Yong-Sul;Ma, Keun-Su;Ju, Jeong-Gab;Ji, Ki-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.388-396
    • /
    • 2019
  • This paper describes the RF(Radio Frequency) interference on the GNSS receiver due to the S-band signals transmitted from the transmitters in the Test Launch Vehicle, and analyzes the cause of the RF interference. Due to the S-band signals that have relatively high power levels compared with GNSS signals, an LNA(Low Noise Amplifier) in the active GNSS antenna was saturated, and the intermodulation signal within GNSS in-bands was produced in the LNA whenever two S-band signals were received from the GNSS antenna. For these reasons, the C/N0 of the satellite signals in the GNSS receiver was attenuated severely. The design of the LNA was changed in order to protect the RF interference due to the S-band signals and the suppression capability of the RF interference was confirmed in the new LNA through the comparison of the old LNA.