• Title/Summary/Keyword: 항공운항학과

Search Result 188, Processing Time 0.017 seconds

A Study on Airworthiness Certification Standards for Military Small Rotary-Wing Unmanned Aerial Vehicles (군용 소형 회전익무인기 감항인증기준에 대한 연구)

  • Yang, Junmo;Lee, Sangchul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.78-83
    • /
    • 2021
  • In modern society, the use of small rotary-wing unmanned aerial vehicles such as drones is increasing. As the military considers tactics using drones, demand for drones is increasing. However, there is still no airworthiness certification standard for drones for safety. In this paper, we proposed airworthiness certification standards for small rotorcraft unmanned aerial vehicles based on CS-LURS in Europe and STANG-4703, 4738 (draft) of the North Atlantic Treaty Organization. In addition, airworthiness certification standards have been strengthened through the case of unmanned aerial vehicle accidents in operation by the Korean military. The airworthiness certification standards for small rotary-wing unmanned aerial vehicles will be supplemented through a demonstration project.

Estimation of Discretionary Fuel for Airline Operations

  • Chang, Hyoseok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.1-13
    • /
    • 2021
  • Fuel costs represent one of the most substantial expenses for airlines, accounting for 20% - 36% of the airline's total operating cost. The present study discusses the so-called discretionary fuel that is additionally loaded at the discretion of airlines to cover unforeseen variations from the planned flight operations. The proper range of the discretionary fuel to be loaded for economic flight operations was estimated by applying Monte Carlo simulation technique. With this simulation model for loading discretionary fuel, airlines cannot only reduce the total amount of fuel to be consumed but also minimize the risk of unplanned flight disruptions caused by insufficient fuel on board. Airlines should be able to guarantee proper risk management processes for fuel boarding by carrying enough fuel to high-risk airports. This study would provide a practical guideline for loading proper amounts of discretionary fuel. Future researchers should be encouraged to improve this study by elaborating the weather variable.

Analysis of Improvement Effects for Flight Training Quality (비행훈련 품질 향상을 위한 개선 효과 분석)

  • Kang, Dal Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.82-88
    • /
    • 2020
  • Currently, flight training is not only a technical instruction that teaches maneuvering operations, but has expertise equal to that of general disciplines. Therefore, flight instructors must have academic knowledge and flight skills. As flight instructors are the first teacher in flight training for students who have never experienced actual flight control, the behavior of flight instructors will affect the students' flight education. Therefore, the influence of flight instructors for students are quite large compared to other educational institutions. In this study, the factors of instructional behavior were determined, and the actual state of instructional behavior of flight instructors were confirmed through students' survey. Improvements were derived to solve the problems identified in the survey results. For the follow-up analysis, improvements were applied to the flight instructors for 8 months, and then re-question was conducted to the same students who responded to the first questionnaire to find out the difference in results before and after through a paired t-test.

Effects of Airline Brand Attitude on Customer Satisfaction and Intention to Reuse (항공사 브랜드태도와 고객만족도 및 재이용 의도 영향 관계 연구: 김포-제주 노선 이용객 대상으로)

  • Wang, Soo-Myung;Lee, Hee-Chan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.91-100
    • /
    • 2018
  • Recently, the airplane use rate has been renewing its peak every year. Especially, Gimpo-Jeju route is the busiest air route in the world and all domestic airlines are competing. Therefore, the purpose of this study is to propose differentiated marketing strategies from other airlines by analyzing the effect of customers' brand attitude on satisfaction and intention to reuse of airlines competing on the most competitive routes. 350 questionnaires were distributed to domestic passengers who have experiences using Gimpo - Jeju route in recent 3 years and 338 questionnaires were analyzed by SPSS24 program. The results of the study showed that brand attitude showed meaningful effects on satisfaction and intention to reuse, and brand image was the most influential factor among the sub - factors of brand attitude. Therefore, airlines operating Gimpo - Jeju route suggest the importance of marketing strategy to enhance brand image among various brand attitudes.

An Experimental Study on the Adherence Strength Characteristics of EA-9320 Adhesive and Aluminum Alloy (EA-9320 접착제와 알루미늄 합금의 접착강도 특성에 관한 실험적 연구)

  • Kim, Changsoo;Baek, Seungik;Park, Keunseog
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.3
    • /
    • pp.24-29
    • /
    • 2019
  • The paste-type adhesive can be stored for a certain period of time and can be cured at room temperature. So it is mainly used for crack patching repair of aircraft airframe structures. This study analysed the influence of environmental factors and evaluated the adherence strength characteristics according to the adherence delay time of the paste-type adhesive. The test specimens were made of aluminum alloy(AL 2024-T3) with reference to ASTM D1002 which is generally performed to measure the adherence strength of the adhesive used for metal bonding. As a result of analysing the influence of temperature and humidity, it was found that the optimal temperature range is $24.5{\pm}0.5^{\circ}C$ and the optimal humidity range is $71{\pm}1%$ for maintenance work of the aircraft using EA-9320 adhesive. In addition, the adherence strength did not decrease with the inherent application time of the EA-9320, but it was found that the adherence strength dropped rapidly when the applied time exceeded the inherent application time of it.

A Study on the Establishment of Minimum Safe Altitude and UAS Operating Limitations (최저비행고도와 UAS 운영제한고도 구축에 관한 연구)

  • Kim, Do Hyun;Lee, Dong Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.94-99
    • /
    • 2021
  • UTM is an air traffic management ecosystem under development for autonomously controlled operations of UAS by the FAA, NASA, other federal partner agencies, and industry. They are collaboratively exploring concepts of operation, data exchange requirements, and a supporting framework to enable multiple UAS operations beyond visual line-of-sight at altitudes under AGL 500ft in airspace where air traffic services are not provided. Minimum Safe Altitude is a generic expression, used in various cases to denote an altitude below which it is unsafe to fly owing to presence of terrain or obstacles. The European drone regulation mentions that the UAS is maintained within 120 metres from the closest point of the surface of the earth during flight, except when overflying an obstacle. This study attempted to develop a minimum flight altitude database system. Based on domestic and international rules and regulations on setting the minimum flight altitude it is expected that it can be applied to the operation of aircraft and unmanned aerial system in UTM environments for specific area in Korea.

A Study on the Characteristics of Low-Level Wind Shear at Jeju International Airport from Go-Around Flight Perspective (항공기 복행사례를 통한 제주국제공항 저층 윈드시어의 특징 연구)

  • Cho, Jin Ho;Baik, Ho Jong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Low level wind shear, which often occurs at Jeju International Airport, is a phenomenon that occurs when the topological location and topographical characteristics of Jeju Island are combined with weather characteristics. Low level wind shears, which are caused by rapid changes in wind direction and wind speed, pose a threat to aircraft safety and also cause abnormal situations, such as aircraft go-around, diversion, and cancellation. Many meteorological studies have been conducted on weather patterns, occurrence periods and frequency of low level wind shears. However, researches related to aircraft operations are limited where here we study the similarities and differences between strong southwest winds and bidirectional tailwind type low level wind shears based on aircraft go-around cases at Jeju International Airport. The results are expected to be used to enhance safety when operating to Jeju International Airport, which includes pilot training that reflects the characteristics generated by wind changes, pilot prior notification, providing pilots with latest trends, and increasing extra fuel.

Analysis of the Total System Error Correlation of Hybrid Fixed-Wing UAV (Unmanned Aerial Vehicle) according to Environmental Factor (환경요인에 따른 복합형 수직이착륙 무인항공기의 통합 시스템 오차 상관도 분석)

  • Songgeun Eom;Jeongmin Kim;Jeonghwan Oh;Dongjin Lee;Doyoon Kim;Sanghyuck Han
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.1
    • /
    • pp.11-17
    • /
    • 2023
  • In this study, the correlation analysis between total system error and environmental factor variables was performed to confirm the effect on the performance of the integrated navigation system by various environmental factors. To collect flight data of hybrid vertical take-off and landing UAVs, scenarios including various turning sections and straight sections such as left turn, right turn, turning rate, and path change angle were selected, and environmental data of wind direction, wind speed, temperature, air pressure, and humidity were collected in real time through weather station. As a result of the correlation analysis between the collected flight data and environmental data, it was concluded that the performance of the integrated navigation system by environmental factors within the collected data was not significant affected and was robust.

A Study on the UAM Vertiport Capacity Calculation MethodUsing Optimization Technique (최적화 기법을 활용한 UAM 버티포트 수용량 산정방법 연구)

  • Seungjun Lee;Hojong Baik;Janghoon Park
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.2
    • /
    • pp.55-65
    • /
    • 2023
  • Due to extreme urbanization, ground transportation in the city center is saturated, and problems such as the lack of expansion infrastructure and traffic congestion increase social costs. To solve this problem, a 3D mobility platform, Urban Air Mobility (UAM), has emerged as a new alternative. A vertiport is a physical space that conducts a similar role to an airport terminal. Vertiport consists of take-off and landing facilities (TLOF, Touchdown and Lift-Off area), space for boarding and disembarking from UAM aircraft (gates), taxiways, and passenger terminals. The type of vertiport (structure, number of facilities) and concept of operations are key variables that determine the number of UAM aircraft that can be accommodated per hour. In this study, a capacity calculation method was presented using an optimization technique (Deterministic Integer Linear Programming). The absolute capacity of the vertiport was calculated using an optimization technique, and a sensitivity analysis was also performed.

Applicable Focal Points of HFACS to Investigate Domestic Civil Unmanned Aerial Vehicle Accidents (국내 민간 무인항공기 사고조사 HFACS 적용중점)

  • Lee, Keon-Hee;Kim, Hyeon-Deok
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.256-266
    • /
    • 2021
  • Domestic and foreign studies point to human factors as the main cause of unmanned aerial vehicle accidents, and HFACS is introduced as a technique to effectively analyze these human factors. Until now, domestic and foreign cases of analyzing the human factors of unmanned aerial vehicle accidents using HFACS were mainly targeted by military unmanned aerial vehicles, which can be used as an objective cause identification and similar accident prevention tool. In particular, identifying the focus of HFACS application considering the performance and operation conditions of domestic civilian unmanned aerial vehicles is expected to greatly help identify the cause and prevent recurrence in the event of an accident. Based on HFACS version 7.0, this study analyzed the accident investigation report data conducted by Korea Aviation and Railway Accident Investigation Board to identify the focus of HFACS application that can be used for domestic civilian unmanned aircraft accident investigations.