• Title/Summary/Keyword: 항공기 형상

Search Result 331, Processing Time 0.021 seconds

Analysis of the Longitudinal Static Stability and the Drop Trajectory of a Fighter Aircraft's External Fuel Tank (전투기 외부 연료 탱크의 종방향 정안정성 및 투하 궤적 해석)

  • Kang, Chi-Hang;Cho, Hwan-Kee;Jang, Young-Il;Lee, Sang-Hyun;Kim, Kwang-Youn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.274-279
    • /
    • 2010
  • The present work is to analyze the longitudinal static stability and the drop trajectory of fighter aircraft's external fuel tank, of which horizontal fin is modified as the 20% scale down size compared with the original one. The analytical results to the pitching stability of external fuel tank using a thin airfoil's aerodynamic force data show the corresponding tendency to results of wind tunnel experiment. Results of trajectory simulation by the 6 degree of freedom equations of motion, comparing with drop trajectories of wind tunnel experiment, are shown that aircraft's attitude affects strongly on horizontal movement but not on the vertical movement. Those results give the reliability to aircraft safety when the external fuel tank with the 20% reduced horizontal fins is released from aircraft based on the flight manual.

Heat Dissipation Design for KW Class Power Control Unit Mounted on Aircraft Store (항공기 장착물에 탑재되는 KW급 전력변환장치의 방열설계)

  • Choi, Seok-min;Kim, Hyung-jae;Jung, Jae-won;Lee, Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.261-266
    • /
    • 2020
  • When a KW-class power control unit is installed in an aircraft installation, a heat dissipation design for a large amount of heat generated during power conversion should be considered. Failure to provide adequate heat dissipation can lead to equipment malfunction and fire, which can be a fatal factor in aviation operations. This paper describes the heat dissipation design of a KW-class power control unit installed in aircraft installation. The design and manufacturing test were conducted through computerized analysis, and the analysis model was corrected by confirming the rapid heat generation phenomenon of the heating element due to high power control. After the model revision, the design was improved, and the high-temperature operation test of the US military standard MIL-STD-810G was performed to confirm the feasibility of the improved design.

Prediction of Glaze Ice Accretion on 2D Airfoil (2차원 에어포일의 유리얼음 형상 예측 코드 개발)

  • Son, Chan-Kyu;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.747-757
    • /
    • 2010
  • The ice accreted on the airfoil is one of the critical drivers that causes the degradation of aerodynamic performance as well as aircraft accidents. Hence, an efficient numerical code to predict the accreted ice shape is crucial for the successful design of de-icing and anti-icing devices. To this end, a numerical code has been developed for the prediction of glaze ice accretion shape on 2D airfoil. Constant Source-Doublet method is used for the purpose of computational efficiency and heat transfer in the icing process is accounted for by Messinger model. The computational results are thoroughly compared against available experiments and other computation codes such as LEWICE and TRAJICE. The direction and thickness of ice horn are shown to yield similar results compared to the experiments and other codes. In addition, the effects of various parameters - temperature, free-stream velocity, liquid water contents, and droplet diameter - on the ice shape are systematically analyzed through parametric studies.

Temporal Prediction of Ice Accretion Using Reduced-order Modeling (차원축소모델을 활용한 시간에 따른 착빙 형상 예측 연구)

  • Kang, Yu-Eop;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.147-155
    • /
    • 2022
  • The accumulated ice and snow during the operation of aircraft and railway vehicles can degrade aerodynamic performance or damage the major components of vehicles. Therefore, it is crucial to predict the temporal growth of ice for operational safety. Numerical simulation of ice is widely used owing to the fact that it is economically cheaper and free from similarity problems compared to experimental methods. However, numerical simulation of ice generally divides the analysis into multi-step and assumes the quasi-steady assumption that considers every time step as steady state. Although this method enables efficient analysis, it has a disadvantage in that it cannot track continuous ice evolution. The purpose of this study is to construct a surrogate model that can predict the temporal evolution of ice shape using reduced-order modeling. Reduced-order modeling technique was validated for various ice shape generated under 100 different icing conditions, and the effect of the number of training data and the icing conditions on the prediction error of model was analyzed.

A Study on Prevention Control Law of Aircraft Departure at High Angle of Attack (고받음각에서 항공기 이탈 방지를 위한 제어법칙에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Jung, Dae-Hee;Kim, Seung-Jun;Bae, Myung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.85-91
    • /
    • 2005
  • Supersonic jet fighter aircraft must have been guaranteed appropriate for controllability and stability in HAoA(High Angle of Attack) region. Limit value of aircraft enter the deep stall at HAoA is related to problem of aircraft configuration design. But, In order to guarantee the aircraft safety in HAoA, control law is designed using digital Fly-By-Wire flight control system in modern versions of supersonic jet fighter aircraft. Also, In order to recovery if aircraft enter the deep stall or spin, anti-spin control law and MPO(Manual Pitch Override) mode is designed. AoA limiter and MPO is designed in longitudinal axis and HAoA departure prevention logic, roll command limiter, rudder fader and anti-spin logic is designed in lateral-directional axis. In this paper, we introduce the T-50 HAoA flight control law and propose that aircraft stability and adequate of these control law from HAoA flight test.

Fatigue Analysis for Newly Installed Blade Antenna of Aging Aircraft (노후 항공기 신규 블레이드 타입 안테나 장착에 따른 피로 해석 연구)

  • Lee, Sang Hoon;Lee, Sook;Choi, Sang Min
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.65-71
    • /
    • 2019
  • In this study, as a part of the aging aircraft performance improvement project for which no design information is provided, a new type of blade antenna is installed on the main part of the aging aircraft, and the method of proving the fatigue life of the main part of the aircraft is reviewed and summarized. There are various methods to prove fatigue life according to the manufacturer and aircraft design conditions. The fatigue life prediction and damage tolerance range of the relevant site were obtained through related regulations and industry examples. From these results, the fatigue life of newly installed antennas around the main parts of the aging aircraft was evaluated and the maintenance period and criteria were set according to the damage tolerance.

Structural Analysis for Newly Installed Blade Antenna of Rotorcraft (신규 블레이드 안테나 장착을 위한 노후 회전익 항공기 구조 해석 연구)

  • Yu, Jeong-O;Kim, Jae-Yong;Choi, Hang-Suk
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.106-112
    • /
    • 2021
  • In this study, we performed a design and structural analysis of a blade-shaped antenna installation on the rear fuselage of a rotary wing aircraft operated by the military. When the structure is damaged while the aircraft is in operation, it is separated from the aircraft main structure and may collide with the rotor or blades to cause the aircraft to crash. Therefore, structural safety for the modified structure must be secured. The design requirement for the newly installed modified part were established, and the load condition was constructed by applying the load that may occur in the aircraft after the modification. Structure safety for the modified structure was secured by performing structure analysis. To analysis stress and deformation of aircraft structure, we developed finite element model and verified it by using hand calculation method. We confirmed the safety of the modified structure through the final structural integrity analysis.

Comparison between Numerical Results of 1D Beam and 2D Plane Stress Finite Element Analyses Considering Aspect Ratio of Cantilever Beams (캔틸레버보의 형상비에 따른 1차원 보와 2차원 평면응력 유한요소해석 결과의 비교)

  • Kang, Yoo-Jin;Sim, Ji-Soo;Cho, Hae-Sung;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.459-465
    • /
    • 2015
  • There exist different kinds of aircrafts, such as conventional airplane, rotorcraft, fighter, and unmanned aerial vehicle. Their shape and feature are dependent upon their own assigned mission. One of the fundamental analyses performed during the aircraft design is the structural analysis. It becomes more complicated and requires severe computations because of the recent complex trends in aircraft structure. In order for efficiency in the structural analysis, a simplified approach, such as equivalent beam or plate model, is preferred. However, it is not clear which analysis will be appropriate to analyze the realistic configuration, such as an aircraft wing, i.e., between an equivalent beam and plate analysis. It is necessary to assess the limitation for both the one-dimensional beam analysis and the two-dimensional plate theory. Thus, in this paper, the static structural analysis results obtained by EDISON solvers were compared with the three-dimensional results obtained from MSC NASTRAN. Before that, EDISON program was verified by comparing the results with those from MSC NASTRAN program and other analytic solutions.

비축대칭 소재에서 내부가 원형인 튜브의후방압출 해석

  • 양동열;배원병;김동권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.74-78
    • /
    • 1992
  • 외부가 비축대칭인 튜브의 수방압출은 자동차와 항공기등의 복잡한 부품을 만드는데 많이 사용된다. 이런 후방압출 제품의 변형 상태는 저자들의 논문에서 이미 밝힌 바와 같이 복잡하다. 그래서, 외부가 비출대칭인 튜브형상의 후방압출은 근래에 와서 연구되었다. 본 연구에서는 저자들의 논문 에서 제시된 동적가용속도장을 수정하여 비축대칭인 소재에서 내부가 원형인 튜브의 후방압출의 최종 단계를 해석하 고자 한다. 해석의 적용예로서는 정다각형 소재와 모서리가 둥근 직사각형(rounded rectangle)소재를 택하였다 제시된 속도장으로부터 단면 감소율과 형상비(aspect ratio)에 대하여 압출 하중과 압출된 소재의 평균 높이가 결정된다. 이론적인 결과와 비교하기 위하여 퓰림처리된 AIST-2024 알루미늄 소재로 실험하였다.

Wake structure study around a NACA 4412 airfoil using EDISON CFD (EDISON CFD를 이용한 NACA 4412 익형의 후류 형상 연구)

  • Sim, Gyu-Ho;Jo, Hyeong-Gyu;Kim, Mun-Sang
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.81-84
    • /
    • 2012
  • 항공기 설계에서 중요한 해석 대상중의 하나인 에어포일 NACA 4412 형상을 2차원 난류 점성유동으로 접근하여 일정 받음각에 따른 유동 현상을 실험 결과와 비교해 보았다. 또한, 역압력구배, 유동 박리, 와류 등의 현상이 어디에서 어떻게 생성되는지 해석을 통하여 분석해 보았다.

  • PDF