• Title/Summary/Keyword: 항공기 형상

Search Result 332, Processing Time 0.023 seconds

9-DOF Modeling and Turning Flight Simulation Evaluation for Parachute (9-DOF 낙하산 모델링 및 선회비행 시뮬레이션 검증)

  • Lee, Sang-Jong;Min, Byoung-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.688-693
    • /
    • 2016
  • This paper describes the parachute dynamics modeling and simulation results for the development of training simulator of a HALO (High Altitude Low Opening) parachute, which is currently in use for military purposes. The target parachute is a rectangular shaped parafoil and its dynamic model is derived based on the real geometry data as the 9-DOF nonlinear equations of dynamics. The simulation was conducted through the moment of inertia and its aerodynamic derivatives to reflect the real characteristics based on the MATLAB/Simulink. In particular, its modeling includes the typical characteristics of the added mass and moment of inertia, which is shown in the strong effects in Lighter-Than-Air(LTA) flight vehicle. The proposed dynamic modeling was evaluated through the simulation under the spiral turning flight conditions of the asymmetric control inputs and compared with the performance index in the target parachute manual.

Real-time Parallel Processing Simulator for Modeling Portable Missile System and Performance Analysis (휴대용 유도탄 체계의 모델링과 성능분석을 위한 실시간 병렬처리 시뮬레이터)

  • Kim Byeong-Moon;Jung Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.35-45
    • /
    • 2006
  • RIn this paper. we describe real-time parallel processing simulator developed for the use of performance analysis of rolling missiles. The real-time parallel processing simulator developed here consists of seeker emulator generating infrared image signal on aircraft, real-time computer, host computer, system unit, and actual equipments such as auto-pilot processor and seeker processor. Software is developed according to the design requirements of mathematic model, 6 degree-of-freedom module, aerodynamic module which are resided in real-time computer. and graphic user interface program resided in host computer. The real-time computer consists of six TI C-40 processors connected in parallel. The seeker emulator is designed by using analog circuits coupled with mechanical equipments. The system unit provides interface function to match impedance between the components and processes very small electrical signals. Also real launch unit of missiles is interfaced to simulator through system unit. In order to use the real-time parallel processing simulator developed here as a performance analysis equipment for rolling missiles, we perform verification test through experimental results in the field.

  • PDF

Orientation Analysis between UAV Video and Photos for 3D Measurement of Bridges (교량의 3차원 측정을 위한 UAV 비디오와 사진의 표정 분석)

  • Han, Dongyeob;Park, Jae Bong;Huh, Jungwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.451-456
    • /
    • 2018
  • UAVs (Unmanned Aerial Vehicles) are widely used for maintenance and monitoring of facilities. It is necessary to acquire a high-resolution image for evaluating the appearance state of the facility in safety inspection. In addition, it is essential to acquire the video data in order to acquire data over a wide area rapidly. In general, since video data does not include position information, it is difficult to analyze the actual size of the inspection object quantitatively. In this study, we evaluated the utilization of 3D point cloud data of bridges using a matching between video frames and reference photos. The drones were used to acquire video and photographs. And exterior orientations of the video frames were generated through feature point matching with reference photos. Experimental results showed that the accuracy of the video frame data is similar to that of the reference photos. Furthermore, the point cloud data generated by using video frames represented the shape and size of bridges with usable accuracy. If the stability of the product is verified through the matching test of various conditions in the future, it is expected that the video-based facility modeling and inspection will be effectively conducted.

Effect on Flow Distortion of S-Duct by Boundary Layer Suction (경계층 흡입이 S-Duct의 유동 왜곡에 미치는 영향성 연구)

  • Baeg, Seungyong;Lee, Jihyeong;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.17-25
    • /
    • 2019
  • An intake of Aircraft becomes S-shaped geometry due to spatial limitation or procuring survivability. But curvature of the S-shaped geometry makes secondary flow or flow separation which is the cause of non-uniform pressure distribution. In this study, boundary layer suction is applied to RAE M 2129 S-Duct by attaching sub duct. Design variable is suction location and angle. A mass flow rate drawn out by suction at the sub duct outlet is constant over every model. A grid dependency test was conducted to verify validity of computation. The comparison among the CFD (Computation Fluid Dynamics), ARA experimental result, and ARA computation result of non-dimensional pressure distribution on the Port side and Starboard Side confirmed the validity of CFD. In this study, Distortion Coefficient was used for evaluating aerodynamic performance of S-Duct. The analysis, which was about flow separation, vortex, mass flow rate distribution, and pressure distribution were also investigated. Maximum 26.14% reduction in Distortion Coefficient was verified.

Initial Sizing of a Roadable PAV Considering Airfoil and Engine Types (익형과 엔진 종류를 고려한 도로주행형 PAV 초기 사이징)

  • Cha, Jae-Young;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.44-54
    • /
    • 2019
  • In many countries, there are needs of new transportations to replace ground congestions due to growing number of cars. In addition, the increase in the number of cars held by economic growth will further increase traffic congestion in the future. To overcome this problem, many researches have been performed for personal air vehicle (PAV). In this study, the wing loading and the power-to-weight ratio that are major design parameters for the sizing of roadable PAVs were calculated for different kinds of airfoil and engine types. I.e., in the sizing process, the study was conducted to determine the design point using the graphs of wing loading, power-to-weight ratio, brake horse power, and fuel efficiency for the given mission profiles considering domestic environments and the FAR PART 23 which is the GA class aircraft certification standard. As a result of sizing, using diesel engine require high maximum take-off weight, wing area, and power compared to gasoline engine due to more engine weight.

Constraint Analysis for the Sizing of Roadable PAV Considering Domestic Environments (국내환경을 고려한 도로주행형 PAV 사이징을 위한 구속조건 해석)

  • Cha, Jae-Young;Hwang, Ho-Yon;Lim, Eun-Ha;Kim, Seok-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.111-122
    • /
    • 2018
  • At present, the ground transportation system is saturated in many countries including Korea. To overcome this problem, many researches of developing a roadable personal air vehicle (PAV) are being carried out to alleviate traffic congestion and to accomplish door-to-door mobility through three-dimensional traffic system. In this study, the thrust-to-weight ratio, the wing loading, and the power-to-weight ratio that are major design parameters for the sizing of roadable PAVs were calculated under the constraints of ground roll, climb rate, maximum cruise speed, service ceiling, stall speed. Also, in the sizing process, the study was conducted to determine the design point using the graphs of thrust-to-weight ratio, wing loading, power-to-weight ratio, and brake horse power for the mission profiles considering domestic environments and the FAR PART 23 which is the GA class aircraft certification standard.

Reverse Design for Composite Rotor Blade of BO-105 Helicopter (BO-105 헬리콥터 복합재 로터 블레이드 역설계)

  • Lee, Chang-Bae;Jang, KiJoo;Im, Byeong-Uk;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.539-547
    • /
    • 2021
  • Helicopter rotor blade is required to be designed by considering the interacting effects among aerodynamics, flexibility, and controllability. The reverse design allows the structural components to have common characteristics by using the configuration numerics and experimental results. This paper aims to design the composite rotor blade which will feature common characteristics with that of BO-105. The present engineering design procedure is done by dividing the rotor blade into a few sections and composite laminates across the cross section. For each section, variational asymptotic beam sectional analysis (VABS) program is used to evaluate its flapwise, lagwise, and torsion stiffnesses to have discrepancy smaller than certain tolerance. Finally, CAMRAD II is used to predict the stress acting on the rotor blade during the specific flight condition and to check whether the present deign is structurally valid.

Time Series Analysis of Soil Creep on Cut Slopes Using Unmanned Aerial Photogrammetry (무인 항공 사진측량을 이용한 절토사면의 땅밀림 시계열 분석)

  • Kim, Namgyun;Choi, Bongjin;Choi, Jaehee;Jun, Byonghee
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.447-456
    • /
    • 2020
  • The study area is a slope in Dogye-eup, Samcheok-si, Gangwon-do. The cutting method was applied to this slope for stabilization in 2009 due to the influence of the waste-rock dump located at the top of slope. Recently, soil cracks and creep have occurred on this slope, and the drainage channel was damaged. Therefore, it was analyzed the topography change through photogrammetry using a UAV. Orthophotos were taken in April and October 2019 respectively. From the Orthophots, Digital Surface Model (DSM) was extracted. Time series analysis was performed by comparing each DSM. The topography of October was pushed forward while maintaining the topography of April. Through these features, it is judged that the soil creep is occurring in this study area.

A Study on the Establishment of ISAR Image Database Using Convolution Neural Networks Model (CNN 모델을 활용한 항공기 ISAR 영상 데이터베이스 구축에 관한 연구)

  • Jung, Seungho;Ha, Yonghoon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.21-31
    • /
    • 2020
  • NCTR(Non-Cooperative Target Recognition) refers to the function of radar to identify target on its own without support from other systems such as ELINT(ELectronic INTelligence). ISAR(Inverse Synthetic Aperture Radar) image is one of the representative methods of NCTR, but it is difficult to automatically classify the target without an identification database due to the significant changes in the image depending on the target's maneuver and location. In this study, we discuss how to build an identification database using simulation and deep-learning technique even when actual images are insufficient. To simulate ISAR images changing with various radar operating environment, A model that generates and learns images through the process named 'Perfect scattering image,' 'Lost scattering image' and 'JEM noise added image' is proposed. And the learning outcomes of this model show that not only simulation images of similar shapes but also actual ISAR images that were first entered can be classified.

Preliminary Conceptual Design of a Multicopter Type eVTOL using Reverse Engineering Techniques for Urban Air Mobility (도심항공 모빌리티(UAM)를 위한 역설계 기법을 사용한 멀티콥터형 eVTOL의 기본 개념설계)

  • Choi, Won-Seok;Yi, Dong-Kyu;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.29-39
    • /
    • 2021
  • As a means of solving traffic congestion in the downtown of large city, the interest in urban air mobility (UAM) using electric vertical take-off landing personal aerial vehicle (eVTOL PAV) is increasing. eVTOL configurations that will be used for UAM are classified by lift-and-cruise, tilt rotors, tilt-wings, tilted-ducted fans, multicopters, depending on propulsion types. This study tries to perform preliminary conceptual design for a given mission profile using reverse engineering techniques by taking the multicopter type Airbus's CityAirbus as a basic model. Wetted area, lift to drag ratio, drag coefficients were calculated using the OpenVSP which is an aerodynamic analysis software. The power required for each mission section of CityAirbus were calculated, and the corresponding battery and motor were selected. Also, total weight was predicted by estimating component weights of eVTOL.