Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.721-723
/
2022
최근 낸드 플래시 메모리 기반의 Solid State Drive(SSD)가 기존 Hard Disk Drive(HDD)를 대신하여 개인용과 산업용으로도 널리 쓰이고 있다. 핫 데이터 구분 기법은 이러한 SSD 의 성능과 수명에 중요한 역할을 하는 Garbage Collection(GC)과 Wear Leveling(WL) 기술의 기반이 된다. 본 논문에서는 핫 데이터를 예측하기 위한 나이브 베이즈 분류 기반의 새로운 핫 데이터 구분 기법을 제안한다. 제안 기법은 워크로드 액세스 패턴의 학습 단계인 초기 단계와 실제 운영 단계를 통해 다시 액세스 될 확률이 높은 데이터를 그렇지 않은 데이터와 효과적으로 구분한다. 다양한 실제 trace 기반 실험을 통해 본 제안 기법이 기존 대표적인 기법보다 평균 19.3% 높은 성능을 확인했다.
Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.730-733
/
2015
대용량의 인터넷 뉴스 데이터로부터 유용한 정보를 찾기 위해 연관 키워드, 핫 키워드 분석과 같은 다양한 분석 기술들이 연구되고 있다. 기존의 토픽 모델 기반의 기법은 키워드들간의 연관성을 제대로 표현하지 못하여 마이닝한 연관 키워드와 핫 키워드의 정확도가 낮은 문제점이 있다. 최근, 뉴스 데이터를 뉴스 내의 단어를 버텍스로, 같은 문장내의 단어들을 에지로 연결하는 그래프 기반의 모델링기법이 연구되었다. 이러한 뉴스 그래프 DB에서 그래프 마이닝 기술을 적용하면 연관 키워드, 핫 키워드를 마이닝 할 수 있다. 본 논문은 그래프 마이닝 기술 기반의 효과적인 뉴스 데이터 분석 기술을 제안한다. 실제 뉴스 데이터를 통해 마이닝한 유용한 뉴스 그래프 패턴들을 보이고 뉴스 데이터 분석에 효과적으로 활용될 수 있음을 보인다.
Proceedings of the Korea Contents Association Conference
/
2013.05a
/
pp.11-12
/
2013
최근 대규모 데이터의 처리와 관리를 위한 분산 저장 및 처리 시스템의 연구 및 활용이 중요해지고 있다. 대표적인 분산 저장 및 처리시스템으로써 하둡(Hadoop)이 널리 활용되고 있다. 하둡 분산 파일 시스템을 기반으로 수행되는 맵-리듀스에서 테스크 할당은 데이터의 로컬리티를 고려하여 최대한 가깝게 할당한다. 하지만 맵-리듀스에서의 데이터 분석 작업에서 작업 형태에 따라 빈번하게 요청되는 데이터가 존재한다. 이러한 경우, 해당 데이터의 낮은 로컬리티로 인해 수행시간 증가 및 데이터 전송의 지연의 문제점을 야기 시킨다. 본 논문에서는 맵-리듀스의 처리 속도 향상을 위한 데이터 접근 패턴에 따른 핫-데이터 복제 기법을 제안한다. 제안하는 기법에서는 데이터 접근 패턴에 따라 높은 접근 빈도를 보이는 핫-데이터에 대한 복제본 최적화 알고리즘을 활용하여 데이터 로컬리티를 향상시키고 결과적으로 작업 수행시간을 감소시킨다. 제안하는 기법은 기존 기법에 비해 모든 노드의 데이터 이동이 감소하여 접근빈도의 분포가 균형적인 것을 확인하였다. 성능평가 결과, 기존 기법에 비해 접근 빈도의 부하가 약 8% 감소하는 것을 확인하였다.
In recently years, with the growth of social media and the development of mobile devices, the data have been significantly increased. Hadoop has been widely utilized as a typical distributed storage and processing framework. The tasks in Mapreduce based on the Hadoop distributed file system are allocated to the map as close as possible by considering the data locality. However, there are data being requested frequently according to the data analysis tasks of Mapreduce. In this paper, we propose a hot-data replication mechanism to improve the processing speed of Mapreduce according to data access patterns. The proposed scheme reduces the task processing time and improves the data locality using the replica optimization algorithm on the high access frequency of hot data. It is shown through performance evaluation that the proposed scheme outperforms the existing scheme in terms of the load of access frequency.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.6
/
pp.761-767
/
2010
In the case of NAND flash memory, a whole block needs to be erased for update operations because update-in- place operations are not supported in NAND flash memory. Blocks of NAND flash memory have the limited erasure cycles, so frequently updated data (hot data) easily makes blocks worn out. As the result, the capacity of NAND flash memory will be reduced by hot data. In this paper, we propose a wear-leveling algorithm by discriminating hot and cold data based on the update patterns of data. When we applied this scheme to NAND flash memory, we confirmed that the erase counts of blocks became more uniform by mapping hot data to a block with a low erase count and cold data to block with a high erase count.
A storage device used in the mobile computing field should have low power, light weight, durability, etc., and should be able to effectively store and manage large-capacity data generated by users. NAND flash memory is mainly used as a storage device in the field of mobile computing. Due to the structural characteristics of NAND flash memory, it is impossible to overwrite in place when a data update request is made, so it can be solved by accurately separating requests that frequently request data update and requests that do not, and storing and managing them in each block. The classification method for such a data update request is called a hot data identification method, and various studies have been conducted at present. This paper continuously records the occurrence of data update requests using a counting filter for more accurate hot data validation, and also verifies hot data by considering how often the requested update requests occur during a specific time.
Recently, the interest in predicting hot topics has grown significantly as it has become more important to find and analyze meaningful information from a large amount of data flowing in social networking services. Existing hot topic detection schemes do not consider a temporal property, so they are not suitable to predict hot topics that are rapidly issued in a changing society. This paper proposes a hot topic prediction scheme that uses a modified TF-IDF in social networking environments. The modified TF-IDF extracts a candidate set of keywords that are momentarily issued. The proposed scheme then calculates the hot topic prediction scores by assigning weights considering user influence and professionality to extract the candidate keywords. The superiority of the proposed scheme is shown by comparing it to an existing detection scheme. In addition, to show whether or not it predicts hot topics correctly, we evaluate its quality with Korean news articles from Naver.
Collecting statistics from client requests, the broadcast server partitions data items into hot and cold-item sets with the optimal cut-off point. Hot items are broadcast periodically with periods based on their access probabilities. In a time slot with no hot items scheduled, the server broadcasts a proper cold item considering the waiting time and the number of outstanding requests. We analyze the optimal the cut-off point by calculating average response time as a function of the cut-off point. Simulation results show that our proposed algorithm outperforms existing methods in various circumstances.
As the IT technology advances, data processing system is required to handle and process large amounts of data. However, the existing On-Disk system has limit to process data which increase rapidly. For that reason, the In-Memory system is being used which saves and manages data on the fast memory not saving data into hard disk. Although it has fast processing capability, it is necessary to use the fault tolerance techniques in the In-Memory system because it has a risk of data loss due to volatility which is one of the memory characteristics. These fault tolerance techniques lead to performance degradation of In-Memory system. In this paper, we classify the data into Hot and Cold data in consideration of the data usage characteristics in the In-Memory system and propose compound backup technique to ensure data persistence. The proposed technique increases the persistence and improves performance degradation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.