컴퓨터 비전 연구에서 2차원 인체 자세는 매우 광범위한 연구 방향으로 특히 자세 추적과 행동 인식에서 유의미한 분야다. 인체 자세 표적 획득은 이미지에서 인체 목표를 정확히 찾는 방법을 연구하는 것이 핵심이며 인체 자세 인식은 인공지능(AI)에 적용하는 한편 일상생활에 활용되고 있어서 매우 중요한 연구의의가 있다. 인체 자세 인식 효과의 우수성의 기준은 인식 과정의 성공률과 정확도에 의해 결정된다. 본 연구의 인체 자세 인식에서는 딥러닝 전용 데이터셋인 MS COCO를 기반하여 인체를 17개의 키 포인트로 구분하였다. 다음으로 주요 특징에 대한 세분화 마스크(segmentation mask) 방법을 사용하여 인식률을 개선하였다. 최종적으로 신경망 모델을 설계하고 간단한 단계별 학습부터 효율적인 학습에 이르기까지 많은 수의 표본을 학습시키는 알고리즘을 제안하여 정확도를 향상할 수 있었다.
본 논문은 잡음감쇠기에서 CNN(Convolutional Neural Network) 계층의 필터 수가 성능에 미치는 영향을 연구하였다 이 시스템은 적응필터 대신 신경망 예측필터를 이용하며 심층학습방법으로 잡음을 감쇠한다. 64-뉴런, 16-커널 CNN 필터와 오차 역전파 알고리즘을 이용하여 잡음이 포함된 음성신호로부터 음성을 추정한다. 본 연구에서 필터 수에 대한 잡음감쇠기의 성능을 검증하기 위하여 Keras 라이브러리를 사용한 프로그램을 작성하고 시뮬레이션을 실시하였다. 시뮬레이션 결과, 본 시스템은 필터 수가 16일 때 MSE(Mean Squared Error) 및 MAE(Mean Absolute Error) 값이 가장 작은 것으로 나타났으며 필터가 4개 일 때 성능이 가장 낮은 것을 볼 수 있다. 그리고 필터가 8개 이상이 되면 필터 수에 따라 MSE 및 MAE 값이 크게 차이나지 않는 것을 보여주었다. 이러한 결과로부터 음성신호의 주요 특징을 표현하기 위해서는 약 8개 이상의 필터를 사용해야 한다는 것을 알 수 있다.
최근 동남아시아의 경제발전에 따라 정보기기의 활용이 광범위하게 확산되고 있으며, 지능적 문자인식을 이용한 응용서비스에 대한 수요가 증가하고 있다. 본 논문은 동남아시아 국가 중 하나인 미얀마 문자에 대한 딥러닝 기반 특징 추출 및 인식에 대해 논한다. 특징 추출에는 미얀마 알파벳(33자)과 숫자(10자리)를 사용한다. 본 논문은 9개의 특징을 추출하고 3개 이상의 새로운 특징을 제안한다. 각 문자와 숫자의 특징을 추출하여 성공적인 결과로 표현하였다. 인식 부분에서는 합성곱 신경망을 사용하여 문자 구분에 대한 실행을 평가한다. 제안한 알고리즘은 캡처된 이미지 데이터 세트에 구현되고, 이에 대한 성능을 평가한다. 입력 데이터 세트에 대한 모델의 정밀도는 96%이며 실시간 입력 이미지를 사용한다.
인공지능 기술이 발달하면서 뉴로사이언스 마이닝(NSM: NeuroScience Mining)과 AI를 접목하려는 시도가 증가하고 있다. 나아가 NSM은 뉴로사이언스와 비즈니스 애널리틱스의 결합으로 인해 연구범위가 확장되고 있다. 본 연구에서는 fNIRS 실험을 통해 확보한 뉴로 데이터를 분석하여 비즈니스 문제 해결 창의성(BPSC: business problem-solving creativity)을 예측하고 이를 통해 NSM의 잠재력을 조사한다. BPSC는 비즈니스에서 차별성을 가지게 하는 중요한 요소이지만, 인지적 자원의 하나인 BPSC의 측정 및 예측에는 한계가 존재한다. 본 논문에서는 BPSC 예측 성능을 높이는 방안으로 CNN, BiLSTM 그리고 어텐션 네트워크를 결합한 새로운 NSM 기법을 제안한다. 제안된 NSM 기법을 15만 개 이상의 fNIRS 데이터를 활용하여 유효성을 입증하였다. 연구 결과, 본 논문에서 제안하는 NSM 방법이 벤치마킹한 알고리즘(CNN, BiLSTM)에 비하여 우수한 성능을 가지는 것으로 나타났다.
본 논문에서는 학습자들의 효율적인 학습을 돕는 온라인 학습 도구 애플리케이션을 웹사이트로 제공하고자 한다. 인출, 체계화, 메타인지, 이 세 가지 측면에서 학습자들의 학습 효율을 어떻게 향상시킬 수 있는지에 대해 논의하고자 하며, 본 웹 서비스를 통해 학습자는 플래시 카드 기반의 인출 학습법으로 학습을 진행할 수 있다. 이때, 합성 패턴(Composite Pattern)을 사용하여 플래시 카드를 Directory-File System과 유사한 형태로 관리하는 방법에 대해 서술한다. 학습자는 플래시 카드를 마인드맵으로 변환하여 지식을 체계적으로 정리할 수 있다. 학습자의 학습진행도에 따라 마인드맵의 색상이 달라지며, 학습자는 자신이 무엇을 알고 무엇을 모르는 지 색상을 통해 쉽게 인지할 수 있다. 이때, 학습진행도를 판단하고 예측하는 알고리즘의 정확도를 향상시키기 위한 딥 러닝 모델 구축을 제안한다.
본 논문은 실시간 영상 분석을 통해서 산업현장에서 활동하는 여러 근로자의 영상 객체를 추출해 내고, 추출된 이미지로 부터 개별 영상 분석을 통해 헬멧의 착용 여부와 낙상 사고 여부를 확인하는 방법을 구현한다. 근로자의 영상 객체를 탐지하기 위해서 딥러닝 기반 컴퓨터 비전 모델인 YOLO를 사용하였으며, 추출된 이미지를 이용하여 헬멧의 착용여부를 판단하기 위해 따로 5,000장의 다양한 헬멧 학습 데이터 이미지를 만들어서 사용하였다. 또한, 낙상사고 여부를 판단하기 위해서 Mediapipe의 Pose 실시간 신체추적 알고리즘을 사용하여 머리의 위치를 확인하고 움직이는 속도를 계산하여 쓰러짐 여부를 판단하였다. 결과에 신뢰성을 주기위한 방법으로 YOLO의 바운딩 박스의 크기를 구하여 객체의 자세를 유추하는 방법을 추가하고 구현하였다. 최종적으로 관리자에게 알림 서비스를 위하여 텔레그램 API Bot과 Firebase DB 서버를 구현하였다.
임상에서 암 관련 질병의 확진을 위해 영상장비를 이용한 기초 진단 이후 추가적인 방법으로 생체검사 등을 이용한 병리적 검사가 필수적이다. 이러한 생체검사를 진행하기 위해서는 전문지식을 가진 종양학자, 임상병리사 등의 도움과 최소한의 소요시간은 확진을 위해 반드시 필요하다. 최근 들어, 인공지능을 활용한 암세포의 자동분류가 가능한 시스템 구축에 관련된 연구가 활발하게 진행되고 있다. 하지만, 이전 연구들은 한정된 알고리즘을 기반으로 하여 세포의 종류와 정확도에 한계를 보인다. 본 연구에서 심층 학습의 일종인 합성곱 신경망을 통해 총 4가지의 암세포를 식별하는 방법을 제안한다. 세포 배양을 통해 얻은 광학영상을 OpenCV를 사용하여 세포의 위치 식별 및 이미지 분할과 같은 전처리 수행 후, EfficientNet을 통해 학습하였다. 모델은 EfficientNet을 기준으로 다양한 hyper parameter를 사용하고, InceptionV3을 학습하여 성능을 비교분석 하였다. 그 결과 96.8%의 높은 정확도로 세포를 분류하는 결과를 보였으며, 이러한 분석방법은 암의 확진에 도움이 될 것으로 기대한다.
본 논문에서는 교류 서보 전동기 PI 전류제어를 위한 주요 시스템 파라미터인 상저항과 상인덕턴스를 측정하는 방법을 제시한다. 서보 전동기 전류제어를 위한 PI 제어이득은 주요 계통 파라미터인 권선간 저항과 인덕턴스 정보를 활용하여 튜닝하는 자동적 방법이 기본적으로 사용된다. 본 연구에서는 이 두 파라미터를 3상 인버터 제어를 통해 계측하는 방법을 제시한다. 이 제어 및 계측 방법은 3상 인버터를 이용하여 3상 권선에 비례입력 만을 이용하는 스텝 전류제어를 수행하고 그 결과로 얻어진 출력 상전류를 측정함으로써 구현된다. 더불어 이 방법은 권선간 인덕턴스 계측을 위해 특정 스위칭모드에서의 인버터 자연-순환(freewheeling) 전류를 이용한다. 이 인버터 제어를 이용하는 측정 방법은 새로운 추가 계측 회로 및 복잡한 계측 알고리즘을 사용하지 않고 실시간으로 파라미터들을 계측 및 연산할 수 있는 해석적 방법이다. 실제 전동기 제어에 사용되어지는 구동기 회로를 그대로 사용하면서 스위칭소자의 도통저항과 각종 결선 저항을 포함하는 합성 저항 및 인덕턴스를 계측할 수 있는 방법이다.
구조물의 상태를 파악하기 위한 균열조사는 정밀안전 진단에 필수적인 검사 항목이다. 그러나 육안으로 이루어지는 균열조사 방식은 현장 상황의 변화에 따라 주관적으로 수행될 수 있다. 이러한 육안검사의 한계를 극복하기 위해 본 연구에서는, ResNet, FPN, Mask R-CNN을 백본(Backbone), 넥(Neck), 헤드(head)로 구성한 합성곱 신경망을 바탕으로, 이미지 데이터에서의 콘크리트 균열 탐지를 자동화하고. 그 성능을 IoU 값을 바탕으로 분석하였다. 해석에 사용된 데이터는 총 1,203개의 이미지 데이터로 구성하였으며, 이 중 70%를 훈련(Training)에, 20%를 검증(Validation)에, 그리고 10%의 데이터를 시험(Testing)에 사용하였다. 시험 결과의 평균 IoU값은 95.83%로 산정되었고, 또한 이미지 내 균열이 전혀 탐지되지 않는 경우는 존재하지 않아, 본 연구에 가정한 모델이 콘크리트의 균열 탐지를 성공적으로 수행하는 것을 확인하였다.
해양 식물플랑크톤 일차생산력의 전 지구적 중요성에도 불구하고 자료 처리상의 어려움 때문에 국내에서는 신뢰할만한 자료가 많지 않다. 식물플랑크톤 일차생산력은 시간-수심 적분 과정을 거쳐 최종적으로 단위 면적당 하루 일차생산력을 구하지만, 시간 적분에 대한 연구결과는 많지 않은 편이다. 본 연구에서는 단위 시간당 일차생산력을 시간 적분하여 하루 일차생산력을 계산하는 수학적 모델을 제시하고 새만금호를 대상으로 모델의 실효성을 검정해 보았다. 검정 결과, 시간 적분 모델이 일사량 실측치를 대입하여 합산한 결과와 잘 일치하였다. 일차생산력 계산을 위한 기초 광량 자료는 변화가 심한 일 자료보다 한 달 또는 한 주간 평균 자료를 대입하는 것이 더 신뢰성 있는 결과에 도움이 되는 것으로 판단되었다. 일차생산력 수직적분은 수직적으로 불균일한 식물플랑크톤 분포 때문에 어려움이 있으나, 엽록소 분포를 몇 가지 유형으로 분류하여 수식화한 다음, 각 수식을 시간 적분한 일차생산력 모델과 합성하여 적분하면 해결할 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.