• 제목/요약/키워드: 합성 알고리즘

검색결과 1,057건 처리시간 0.023초

객체 감지 데이터 셋 기반 인체 자세 인식시스템 연구 (Research on Human Posture Recognition System Based on The Object Detection Dataset)

  • 유암;리라이춘;루징쉬엔;쉬멍;정양권
    • 한국전자통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.111-118
    • /
    • 2022
  • 컴퓨터 비전 연구에서 2차원 인체 자세는 매우 광범위한 연구 방향으로 특히 자세 추적과 행동 인식에서 유의미한 분야다. 인체 자세 표적 획득은 이미지에서 인체 목표를 정확히 찾는 방법을 연구하는 것이 핵심이며 인체 자세 인식은 인공지능(AI)에 적용하는 한편 일상생활에 활용되고 있어서 매우 중요한 연구의의가 있다. 인체 자세 인식 효과의 우수성의 기준은 인식 과정의 성공률과 정확도에 의해 결정된다. 본 연구의 인체 자세 인식에서는 딥러닝 전용 데이터셋인 MS COCO를 기반하여 인체를 17개의 키 포인트로 구분하였다. 다음으로 주요 특징에 대한 세분화 마스크(segmentation mask) 방법을 사용하여 인식률을 개선하였다. 최종적으로 신경망 모델을 설계하고 간단한 단계별 학습부터 효율적인 학습에 이르기까지 많은 수의 표본을 학습시키는 알고리즘을 제안하여 정확도를 향상할 수 있었다.

CNN 잡음감쇠기에서 필터 수의 최적화 (Optimization of the Number of Filter in CNN Noise Attenuator)

  • 이행우
    • 한국전자통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.625-632
    • /
    • 2021
  • 본 논문은 잡음감쇠기에서 CNN(Convolutional Neural Network) 계층의 필터 수가 성능에 미치는 영향을 연구하였다 이 시스템은 적응필터 대신 신경망 예측필터를 이용하며 심층학습방법으로 잡음을 감쇠한다. 64-뉴런, 16-커널 CNN 필터와 오차 역전파 알고리즘을 이용하여 잡음이 포함된 음성신호로부터 음성을 추정한다. 본 연구에서 필터 수에 대한 잡음감쇠기의 성능을 검증하기 위하여 Keras 라이브러리를 사용한 프로그램을 작성하고 시뮬레이션을 실시하였다. 시뮬레이션 결과, 본 시스템은 필터 수가 16일 때 MSE(Mean Squared Error) 및 MAE(Mean Absolute Error) 값이 가장 작은 것으로 나타났으며 필터가 4개 일 때 성능이 가장 낮은 것을 볼 수 있다. 그리고 필터가 8개 이상이 되면 필터 수에 따라 MSE 및 MAE 값이 크게 차이나지 않는 것을 보여주었다. 이러한 결과로부터 음성신호의 주요 특징을 표현하기 위해서는 약 8개 이상의 필터를 사용해야 한다는 것을 알 수 있다.

딥러닝 기반 미얀마 문자의 특징 추출 및 인식 (Feature Extraction and Recognition of Myanmar Characters Based on Deep Learning)

  • 옴마킨;이성근
    • 한국전자통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.977-984
    • /
    • 2022
  • 최근 동남아시아의 경제발전에 따라 정보기기의 활용이 광범위하게 확산되고 있으며, 지능적 문자인식을 이용한 응용서비스에 대한 수요가 증가하고 있다. 본 논문은 동남아시아 국가 중 하나인 미얀마 문자에 대한 딥러닝 기반 특징 추출 및 인식에 대해 논한다. 특징 추출에는 미얀마 알파벳(33자)과 숫자(10자리)를 사용한다. 본 논문은 9개의 특징을 추출하고 3개 이상의 새로운 특징을 제안한다. 각 문자와 숫자의 특징을 추출하여 성공적인 결과로 표현하였다. 인식 부분에서는 합성곱 신경망을 사용하여 문자 구분에 대한 실행을 평가한다. 제안한 알고리즘은 캡처된 이미지 데이터 세트에 구현되고, 이에 대한 성능을 평가한다. 입력 데이터 세트에 대한 모델의 정밀도는 96%이며 실시간 입력 이미지를 사용한다.

Applying a Novel Neuroscience Mining (NSM) Method to fNIRS Dataset for Predicting the Business Problem Solving Creativity: Emphasis on Combining CNN, BiLSTM, and Attention Network

  • Kim, Kyu Sung;Kim, Min Gyeong;Lee, Kun Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.1-7
    • /
    • 2022
  • 인공지능 기술이 발달하면서 뉴로사이언스 마이닝(NSM: NeuroScience Mining)과 AI를 접목하려는 시도가 증가하고 있다. 나아가 NSM은 뉴로사이언스와 비즈니스 애널리틱스의 결합으로 인해 연구범위가 확장되고 있다. 본 연구에서는 fNIRS 실험을 통해 확보한 뉴로 데이터를 분석하여 비즈니스 문제 해결 창의성(BPSC: business problem-solving creativity)을 예측하고 이를 통해 NSM의 잠재력을 조사한다. BPSC는 비즈니스에서 차별성을 가지게 하는 중요한 요소이지만, 인지적 자원의 하나인 BPSC의 측정 및 예측에는 한계가 존재한다. 본 논문에서는 BPSC 예측 성능을 높이는 방안으로 CNN, BiLSTM 그리고 어텐션 네트워크를 결합한 새로운 NSM 기법을 제안한다. 제안된 NSM 기법을 15만 개 이상의 fNIRS 데이터를 활용하여 유효성을 입증하였다. 연구 결과, 본 논문에서 제안하는 NSM 방법이 벤치마킹한 알고리즘(CNN, BiLSTM)에 비하여 우수한 성능을 가지는 것으로 나타났다.

효과적인 학습을 위한 메타인지 기반의 온라인 학습 도구 웹사이트 구축 (Development of Metacognitive-Based Online Learning Tools Website for Effective Learning)

  • 이현준;빈기범;김은서;문일영
    • 실천공학교육논문지
    • /
    • 제14권2호
    • /
    • pp.351-359
    • /
    • 2022
  • 본 논문에서는 학습자들의 효율적인 학습을 돕는 온라인 학습 도구 애플리케이션을 웹사이트로 제공하고자 한다. 인출, 체계화, 메타인지, 이 세 가지 측면에서 학습자들의 학습 효율을 어떻게 향상시킬 수 있는지에 대해 논의하고자 하며, 본 웹 서비스를 통해 학습자는 플래시 카드 기반의 인출 학습법으로 학습을 진행할 수 있다. 이때, 합성 패턴(Composite Pattern)을 사용하여 플래시 카드를 Directory-File System과 유사한 형태로 관리하는 방법에 대해 서술한다. 학습자는 플래시 카드를 마인드맵으로 변환하여 지식을 체계적으로 정리할 수 있다. 학습자의 학습진행도에 따라 마인드맵의 색상이 달라지며, 학습자는 자신이 무엇을 알고 무엇을 모르는 지 색상을 통해 쉽게 인지할 수 있다. 이때, 학습진행도를 판단하고 예측하는 알고리즘의 정확도를 향상시키기 위한 딥 러닝 모델 구축을 제안한다.

헬멧 착용 여부 및 쓰러짐 사고 감지를 위한 AI 영상처리와 알람 시스템의 구현 (Implementation of an alarm system with AI image processing to detect whether a helmet is worn or not and a fall accident)

  • 조용화;이혁재
    • 융합신호처리학회논문지
    • /
    • 제23권3호
    • /
    • pp.150-159
    • /
    • 2022
  • 본 논문은 실시간 영상 분석을 통해서 산업현장에서 활동하는 여러 근로자의 영상 객체를 추출해 내고, 추출된 이미지로 부터 개별 영상 분석을 통해 헬멧의 착용 여부와 낙상 사고 여부를 확인하는 방법을 구현한다. 근로자의 영상 객체를 탐지하기 위해서 딥러닝 기반 컴퓨터 비전 모델인 YOLO를 사용하였으며, 추출된 이미지를 이용하여 헬멧의 착용여부를 판단하기 위해 따로 5,000장의 다양한 헬멧 학습 데이터 이미지를 만들어서 사용하였다. 또한, 낙상사고 여부를 판단하기 위해서 Mediapipe의 Pose 실시간 신체추적 알고리즘을 사용하여 머리의 위치를 확인하고 움직이는 속도를 계산하여 쓰러짐 여부를 판단하였다. 결과에 신뢰성을 주기위한 방법으로 YOLO의 바운딩 박스의 크기를 구하여 객체의 자세를 유추하는 방법을 추가하고 구현하였다. 최종적으로 관리자에게 알림 서비스를 위하여 텔레그램 API Bot과 Firebase DB 서버를 구현하였다.

심층 학습을 통한 암세포 광학영상 식별기법 (Identification of Multiple Cancer Cell Lines from Microscopic Images via Deep Learning)

  • 박진형;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.374-376
    • /
    • 2021
  • 임상에서 암 관련 질병의 확진을 위해 영상장비를 이용한 기초 진단 이후 추가적인 방법으로 생체검사 등을 이용한 병리적 검사가 필수적이다. 이러한 생체검사를 진행하기 위해서는 전문지식을 가진 종양학자, 임상병리사 등의 도움과 최소한의 소요시간은 확진을 위해 반드시 필요하다. 최근 들어, 인공지능을 활용한 암세포의 자동분류가 가능한 시스템 구축에 관련된 연구가 활발하게 진행되고 있다. 하지만, 이전 연구들은 한정된 알고리즘을 기반으로 하여 세포의 종류와 정확도에 한계를 보인다. 본 연구에서 심층 학습의 일종인 합성곱 신경망을 통해 총 4가지의 암세포를 식별하는 방법을 제안한다. 세포 배양을 통해 얻은 광학영상을 OpenCV를 사용하여 세포의 위치 식별 및 이미지 분할과 같은 전처리 수행 후, EfficientNet을 통해 학습하였다. 모델은 EfficientNet을 기준으로 다양한 hyper parameter를 사용하고, InceptionV3을 학습하여 성능을 비교분석 하였다. 그 결과 96.8%의 높은 정확도로 세포를 분류하는 결과를 보였으며, 이러한 분석방법은 암의 확진에 도움이 될 것으로 기대한다.

  • PDF

3상 인버터 구동기를 이용하는 교류 서보전동기의 전류제어 파라미터 계측법 (A.C. servo motor current control parameter measurement strategy using the three phase inverter driver)

  • 최중경
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.434-440
    • /
    • 2023
  • 본 논문에서는 교류 서보 전동기 PI 전류제어를 위한 주요 시스템 파라미터인 상저항과 상인덕턴스를 측정하는 방법을 제시한다. 서보 전동기 전류제어를 위한 PI 제어이득은 주요 계통 파라미터인 권선간 저항과 인덕턴스 정보를 활용하여 튜닝하는 자동적 방법이 기본적으로 사용된다. 본 연구에서는 이 두 파라미터를 3상 인버터 제어를 통해 계측하는 방법을 제시한다. 이 제어 및 계측 방법은 3상 인버터를 이용하여 3상 권선에 비례입력 만을 이용하는 스텝 전류제어를 수행하고 그 결과로 얻어진 출력 상전류를 측정함으로써 구현된다. 더불어 이 방법은 권선간 인덕턴스 계측을 위해 특정 스위칭모드에서의 인버터 자연-순환(freewheeling) 전류를 이용한다. 이 인버터 제어를 이용하는 측정 방법은 새로운 추가 계측 회로 및 복잡한 계측 알고리즘을 사용하지 않고 실시간으로 파라미터들을 계측 및 연산할 수 있는 해석적 방법이다. 실제 전동기 제어에 사용되어지는 구동기 회로를 그대로 사용하면서 스위칭소자의 도통저항과 각종 결선 저항을 포함하는 합성 저항 및 인덕턴스를 계측할 수 있는 방법이다.

콘크리트 구조체 균열 탐지에 대한 Mask R-CNN 알고리즘 적용성 평가 (Application of Mask R-CNN Algorithm to Detect Cracks in Concrete Structure)

  • 배병규;최용진;윤강호;안재훈
    • 한국지반공학회논문집
    • /
    • 제40권3호
    • /
    • pp.33-39
    • /
    • 2024
  • 구조물의 상태를 파악하기 위한 균열조사는 정밀안전 진단에 필수적인 검사 항목이다. 그러나 육안으로 이루어지는 균열조사 방식은 현장 상황의 변화에 따라 주관적으로 수행될 수 있다. 이러한 육안검사의 한계를 극복하기 위해 본 연구에서는, ResNet, FPN, Mask R-CNN을 백본(Backbone), 넥(Neck), 헤드(head)로 구성한 합성곱 신경망을 바탕으로, 이미지 데이터에서의 콘크리트 균열 탐지를 자동화하고. 그 성능을 IoU 값을 바탕으로 분석하였다. 해석에 사용된 데이터는 총 1,203개의 이미지 데이터로 구성하였으며, 이 중 70%를 훈련(Training)에, 20%를 검증(Validation)에, 그리고 10%의 데이터를 시험(Testing)에 사용하였다. 시험 결과의 평균 IoU값은 95.83%로 산정되었고, 또한 이미지 내 균열이 전혀 탐지되지 않는 경우는 존재하지 않아, 본 연구에 가정한 모델이 콘크리트의 균열 탐지를 성공적으로 수행하는 것을 확인하였다.

식물플랑크톤 일차생산력의 새로운 시간 적분 알고리즘 (Time Integration Algorithm for the Estimation of Daily Primary Production)

  • 박종규;김응권
    • 한국해양학회지:바다
    • /
    • 제15권3호
    • /
    • pp.124-132
    • /
    • 2010
  • 해양 식물플랑크톤 일차생산력의 전 지구적 중요성에도 불구하고 자료 처리상의 어려움 때문에 국내에서는 신뢰할만한 자료가 많지 않다. 식물플랑크톤 일차생산력은 시간-수심 적분 과정을 거쳐 최종적으로 단위 면적당 하루 일차생산력을 구하지만, 시간 적분에 대한 연구결과는 많지 않은 편이다. 본 연구에서는 단위 시간당 일차생산력을 시간 적분하여 하루 일차생산력을 계산하는 수학적 모델을 제시하고 새만금호를 대상으로 모델의 실효성을 검정해 보았다. 검정 결과, 시간 적분 모델이 일사량 실측치를 대입하여 합산한 결과와 잘 일치하였다. 일차생산력 계산을 위한 기초 광량 자료는 변화가 심한 일 자료보다 한 달 또는 한 주간 평균 자료를 대입하는 것이 더 신뢰성 있는 결과에 도움이 되는 것으로 판단되었다. 일차생산력 수직적분은 수직적으로 불균일한 식물플랑크톤 분포 때문에 어려움이 있으나, 엽록소 분포를 몇 가지 유형으로 분류하여 수식화한 다음, 각 수식을 시간 적분한 일차생산력 모델과 합성하여 적분하면 해결할 수 있을 것으로 판단된다.