• Title/Summary/Keyword: 합성부재

Search Result 254, Processing Time 0.023 seconds

Numerical Evaluation of Stress Loss Rates and Adjusting Coefficients due to Internal and External Constraints of Concrete Long-Term Deformation (콘크리트 장기변형의 내·외부 구속에 의한 응력 손실률 및 수정계수 평가의 전산구조해석)

  • Yon, Jung-Heum;Kim, Hyun-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.429-438
    • /
    • 2013
  • An object oriented numerical analysis program of axial-flexural elements and the step-by-step method (SSM) has been developed to analyze concrete long-term behaviors of structures constrained internally and externally. The results of the numerical analysis for simple and continuous prestressed (PS) concrete box and composite girders, pre-cast slab of continuous steel composite girder, and simple preflex composite girder show that the adjusting coefficient decreases by increasing constraint. The loss rates of pre-tension force were not sensitive but those of pre-compression force were increased rapidly by decreasing adjusting coefficient. This indicates that the design based on the loss rate of pre-tension can over-estimate the pre-compression force in a concrete section constrained internally and externally. The adjusting coefficients which satisfy results of the numerical analysis are 0.35~0.95, and it can be used as an index of constraint of concrete long-term deformation. The adjusting coefficient 0.5 of Bridge Design Specifications can under-estimate residual stress of PS concrete slab, and the coefficient 0.7 or 0.8 of LRFD Bridge Designing Specifications can under-estimate the loss rates of continuous PS concrete girders. The adjusting coefficient of hybrid structures should be less then 0.4.

Study on Bending and Shear Strength Setting of Full-scale Model Additional Walls for Additional Wall Test Bed Combined with PHC-W Pile Retaining Wall (PHC-W말뚝 흙막이와 결합된 지하증설벽체 테스트베드 구축을 위한 실대형 지하증설벽체의 휨강도 및 전단강도 설정 연구)

  • Woo, Jong Youl;Yoo, Choong Geon;Kim, Sung Su;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.7-17
    • /
    • 2018
  • Test bed additional wall combined with PHC-W pile retaining wall has been constructed. To determine the dimensions of test bed additional wall, bending and shear tests of full scale core members of additional wall were tested. Basement additional walls utilizing PHC-W pile retaining wall, which were developed by modifying the cross-section of PHC piles, were classified into the composite additional wall and the non-composite additional wall. Their tests were conducted to obtain bending strength and shear strength of basement additional walls ultilizing PHC-W pile retaining wall. Since bending strengths and shear strengths of the composite additional wall and the non-composite additional wall were similar, it could be confirmed that the non-composite additional wall could be applied instead of the composite additional wall. Full-scale model additional wall was 200 mm thick, thus the thickness of additional wall combined with PHC-W pile retaining wall could be reduced by 100~200 mm.

Performance Analysis of SMART Frame Applied to RC Column-Beam Structures (RC 라멘조에 SMART Frame 적용 시 효용성 분석)

  • Cho, Wonhyun;Lim, Chaeyeon;Jang, Duk Bea;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.168-169
    • /
    • 2015
  • SMART Frame is a composite precast concrete structure system to deliver the advantages of both steel frame and reinforced concrete. Many studies have established to date that SMART Frame is more advantageous than conventional frame-type structure in terms of structural stability, constructability, economic viability as well as reduction of construction schedule. However, such studies have focused primarily on wall-type or flat slab-type apartment housing structures, failing to include Rahmen structures in their scope. Accordingly, this study aims to analyze the benefits of potential application of SMART Frame to RC Rahmen structures. As the structural stability and constructability of SMART Frame is already proven, this study reviews its benefits from the perspective of cost reduction. Conclusion of this study will be used subsequently in predicting the benefits of SMART Frame when it is adapted to RC Rahmen structures.

  • PDF

Preparation and Sintering Behavior of Monodispersed Alumina-Zirconia Fine Powders (단분산 $Al_2O_3-ZrO_2$ 복합분말의 합성과 소결특성)

  • 부재필;송용원;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1209-1217
    • /
    • 1994
  • Monodispersed alumina-zirconia fine powders were prepared by controlled hydrolysis of alkoxides. These powders and the sintered bodies were characterized. Aluminium alkoxide and zirconium alkoxide were dissolved into complex solvent with butanol and n-propanol, and by acetonitrile added hydrolytic solution, hydrolysis rate was controlled. The oil, as a dispersant, was added in hydrolytic solution, and then prepared powders were nano-sized and well-monodispersed. In the case of hydroxypropyl celluose (HPC) as a dispersant, it was added in complex solution with butanol and iso-propanol, sub-micrometer sized and well-monodispersed powders could be prepared. The value of relative density (R.D.) and tetragonal phase fraction of zirconia in the sintered body made by nano-meter sized powders were respectively higher than those in the case of sub-micrometer sized one.

  • PDF

A Basic Research for Connection Type of Green Frame (Green Frame 접합방식 기초연구)

  • Kim, Keun-Ho;Joo, Jin-Kyu;Lim, Chae-yeon;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.171-172
    • /
    • 2011
  • Green column and green beam, key structural members of green frame, have the characteristics of post-lintel structure, thanks to the steel frame in the connection, enabling prompt and precise installation. The connection of green frame can be divided into 4 types, depending on its shape, and each type is associated with different characteristics and construction methods. Notably, as the connection between green columns have differing types and sequences of work, subject to the connection method in use, a connection method optimized for relevant site conditions need to be selected. Therefore, this study analyzed pros and cons of 4 different types of green frame connection methods. The results set forth herein will provide basic data for subsequent studies to comparatively analyze the performance and constructibility of different green frame connection methods.

  • PDF

A Basic Study on the Arrangement of In-situ Production Module of the Composite PC Members (합성 PC 부재 현장생산배치에 관한 기초 연구)

  • Lee, Goon-Jae;Joo, Jin-Kyu;Lee, Sung-Ho;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.29-30
    • /
    • 2011
  • A Green Frame is a composite Rahmen precast concrete structure that utilizes the advantages of the steel frame and the reinforced concrete. Compared to bearing wall structure, the precast concrete structure may raise construction cost If the precast concrete members are produced in plant. Thus, if the precast concrete members can be produced in site, the cost-effectiveness and quality shall be increased. Various site conditions must be considered and reviewed to ensure a space for the in-situ production. Therefore, this study focuses on the basic study on the arrangement of in-situ production module of composite precast concrete members.

  • PDF

Deflection Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 재령종속적 처짐해석)

  • 성원진;김정현;윤성욱;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.427-432
    • /
    • 2003
  • An analytical method to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the box girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The one dimensional finite element analysis results are compared with those of the three dimensional finite element analysis and the analytical method based on the sectional analysis. Close agreement is observed among the three methods.

  • PDF

Finite Element Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 유한요소 거동해석)

  • 강병수;주영태;신동훈;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.463-468
    • /
    • 2003
  • A finite element formulation to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The total potential energy of the flexural composite member is minimized to derive the time dependent finite element equilibrium equation. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The numerical analysis with considering the variation of concrete elastic modulus are performed to investigate the effect of it on the early-age behavior of composite structures. The one dimensional finite element analysis results are compared with the analytical method based on the sectional analysis. Close agreement is observed among the two methods.

  • PDF

Experimental Study for Confined Concrete of Double Skinned Composite Tubular Columns by Uniaxial Compression Test (일축 압축 실험을 통한 DSCT 부재의 구속 콘크리트에 대한 실험적 연구)

  • Lee, Jeong-Hwa;Han, Sang-Yun;Won, Deok-Hee;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.13-21
    • /
    • 2013
  • In this study, uniaxial compression tests were performed to investigates the stress-strain relations of Double Skinned Composite Tubular Columns reinforced with steel tube. The confined concrete has been known as the strength of concrete increases significantly. Specimens reinforced with outer and inner steel tube were tested by uniaxial compression test. To investigate the influence of concrete strength increase by confining conditions in steel tubes, 8 specimens with different thickness of tube, hollowness ratio and concrete strength were tested and compared with other researcher's concrete material model.

A Basic study of Bolt-type Connection Form of Green Frame (그린 프레임 볼트방식 접합형태 비교 기초연구)

  • Kim, Geun-Ho;Lim, Chae-yeon;Na, Young-Joo;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.337-338
    • /
    • 2012
  • As a rahmen structure, the connection among columns of Green frame is divided into three types such as sleeve, coupler (column pre and post installation), and bolt. The bolt type consists of six types according to steel frame shape and each type has different constructability, safety, structural performance, cost, and quality. Therefore, the analysis of comparison among the types is necessary. The objective of this study is to analyze the characteristics according to the shape of six bolt types to select the appropriate connection of Green frame. The results of this study can be used as a basic study for indentifying the characteristics of steel frame on site applying bolt type connection of Green frame. In addition, this study can be applicable to compare and analyze the performance and constructability of six bolt types in detail.

  • PDF