• Title/Summary/Keyword: 합성바닥해석

Search Result 69, Processing Time 0.025 seconds

Partial Composite Action of Gypsum-Sheathed Cold-Formed Steel Wall Stud Panels (석고보드와 결합된 강재 샛기둥 패널의 부분 합성거동)

  • Lee, Young Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.373-380
    • /
    • 2001
  • The problem addressed in this study is how to analytically treat the partial composite action for wall panels. An equation, derived for wood-joist floor systems, which determines deflections for beams with partial composite action is introduced. The equation is applied to the calculation of the mid-span deflection for gypsum-sheathed, cold-formed steel was stud panels. The objective of this study is to properly reflect the influence of the following factors in the calculation of mid-span deflection for the panel: connection slip, local buckling, perforations in the stud web, and effects from joints in the sheathing. Predicted deflections based on an upper bound for connection rigidity were closest to experimental deflections.

  • PDF

Longitudinal Behavior of Prestressed Steel-Box-Girder Bridge (프리스트레스를 도입한 강합성형 교량의 교축방향 거동)

  • Park, Nam Hoi;Kang, Young Jong;Lee, Man Seop;Go, Seok Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.321-329
    • /
    • 2003
  • To effectively use the cross section of concrete decks, analytical and experimental studies on prestressed steel-box-girder bridges were performed in this study. The method of applying prestress was determined in the analytical study and the longitudinal behavior of the prestressed steel-box-girder bridge was considered in the experimental study. The object model for these studies was a two-span continuous bridge. The method of applying prestress determined herein was divided into two parts: one is that apply prestress to the concrete deck at its intermediate support, and the other is that apply prestress to the lower flange of the steel-box-girder bridge at its end support. The prototype bridge for the experiment was simulated based on the rule of similitude and was fabricated according to construction steps to apply prestress effectively. From the results of the experimental study, it has demonstrated that the prestressed steel-box-girder bridge provides better performance than the general steel-box-girder bridge in view of the increase of the design live load, the reduction of the tensile stress of the concrete deck at intermediate support, and the reduction of the displacement.

Reliability Analysis of Composite Girder Designed by LRFD Method for Positive Flexure (하중저항계수설계법(LRFD)으로 설계된 강합성 거더의 휨에 대한 신뢰도해석)

  • Shin, Dong-Ku;Kim, Cheon-Yong;Paik, In-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.539-546
    • /
    • 2006
  • The reliability analysis of simply-supported composite plate girder and box girder bridges under positive flexure is performed. The bridges are designed based on the AASHTO-LRFD specification. A performance function for flexural failure is expressed as a function of such random variables as flexural resistance of composite section and design moments due to permanent load and live load. For the flexural resistance, the statistical parameters obtained by analyzing over 16,000 samples of domestic structural steel products are used. Several different values of statistical parameters with the bias factor in the range of 0.95-1.05 and the coefficient of variation in the range of 0.15-0.25 are used for the live-load moment. Due to the lack of available domestic measured data on the dead load moment, the same values of statistical properties used in the calibration of AASHTO-LRFD are applied. The reliability indices for the composite plate girder and box girder bridges with various span lengths are calculated by applying the Rackwitz-Fiessler technique.

Estimation of Shear Strength of RC Shear Connection for the Steel-Concrete Composite Girder (강합성 거더용 철근콘크리트 전단연결체의 전단강도 평가)

  • Shin, Hyun Seop;You, Young Jun;Jeong, Youn Ju;Eom, In Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.229-239
    • /
    • 2010
  • For the purpose of improvement of the load carrying capacity and constructibility of the conventional steel-concrete composite girder through a effective appliance of the construction materials and optimization of the girder section, a new type section of composite girder and RC shear connection were proposed. In this study shear strength of the RC shear connection is estimated, and the characteristics of shear load-slip behaviour is analyzed. Push-out tests on shear specimens and FEM analysis with various design parameters are carried out, and results are analyzed. The results of test and FEM analysis showed that shear strength of RC shear connection is underestimated by the design provisions of the current design code. By regression analysis a empirical equation for the estimation of shear strength of RC shear connection is proposed.

Evaluation of Proper Level of the Longitudinal Prestress for the Precast Deck of Railway Bridges Considering the Temperature Change (철도교용 프리케스트 바닥판의 온도변화를 고려한 적정한 종방향 프리스트레스 수준의 산정)

  • Jeon, Se Jin;Kim, Young Jin;Kim, Seong Woon;Kim, Cheol Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.499-509
    • /
    • 2006
  • Precast concrete deck has many advantages comparing with the in-situ concrete deck, and has been successfully applied to replacement of the deteriorated decks and to the newly constructed highway bridges in domestic region. In order to apply the precast decks into the railway bridges, however, differences of the load characteristics between the highway and the railway should be properly taken into account including the train load, longitudinal force of the continuous welded rail, acceleration or braking force, temperature change and shrinkage. Proper level of the longitudinal prestress of the tendons that can ensure integrity of the transverse joints in the deck system is of a primary importance. To this aim, the longitudinal tensile stresses induced by the design loads are derived using three-dimensional finite element analyses for the frequently adopted PSC composite girder railway bridge. The effect of the temperature change is also investigated considering the design codes and theoretical equations in an in-depth manner. The estimated proper prestress level to counteract those tensile stresses is above 2.4 MPa, which is similar to the case of the highway bridges.

The Composite Effects of Composite Truss using T-Shaped Steels (T형강을 사용한 합성트러스의 합성효과)

  • Lee, Myung-Jae;Choi, Byong-Jeong;Kim, Hee-Dong;Kang, Duck-Kyung;Sim, Min-Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.599-608
    • /
    • 2010
  • Steel trusses that act compositely with concrete slabs have proven to be an economical system for long-span floors. The composite action is generally achieved by providing shear connections between the steel top chord and the concrete topping. The composite sections have greater stiffness than the sum of the individual stiffnesses of the slab and truss. Therefore, steel trusses that act compositely with concrete slabs can carry larger loads and are stifferand less prone to transient vibration. During the tests that were performed in this study, the crack pattern and deflection of the beam of the composte truss were investigated. The test results were compared with the results for the noncomposite trusses.

A Numerical Study on Load Distribution Factors for Simplified Composite H-Beam Panel Bridges (강합성 초간편 H형강 교량의 하중분배계수에 관한 해석적 연구)

  • Park, Jong Sup;Kim, Jae Heung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.221-232
    • /
    • 2009
  • The load distribution factor (LDF) values of simplified composite H beam panel bridges (SCHPBs) that were subjected to one lane and two lane loads were investigated using three dimensional finite element analyses with the computer program ABAQUS (2007). This study considered some design parameters such as the slab thickness, the steel plate thickness, the span length, and the continuity of the SCHPBs in the development of new LDFs. The distribution values that were obtained from these analyses were compared with those from the AASHTO Standard, LRFD, and the equations presented by Tarhini and Frederick, Huo et al., Back and Shin, and Cai. The AASHTO Standard distribution factors for SCHPBs were found to be very conservative. Sometimes, the distribution values from the finite element analyses for interior girders were similar to the results of the AASHTO LRFD, whereas the values for exterior girders were conservative in most cases. The new distribution values that were presented in this study produced LDFs that are more conservative than those from the finite element method. For the simple application of the design to SCHPBs, bridge engineers can use 0.42 for the interior girder and 0.32 for the exterior girder. The proposed values improve the current design procedure for the LDF problem and increase SCHPB design efficiency.

사장교의 설계

  • 김우종;조경식
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.5-11
    • /
    • 1993
  • 본문에서는 서해대교 사장교 설계의 경험을 기초로 사장교의 거동원리와 구조해석시 유의해야 할 몇가지 사항들에 대해서 기술하였다. 특히 강합성사장교의 주형해석시 바닥판과 강형의 모델링, 가설방법과 순서에 따른 명확한 이해와 이에 따른 구조계의 이상화, 시간경과에 따른 재료성질의 보다 엄밀한 구현 등이 설계에 미치는 영향과 중요성을 강조하였다. 사장교는 기존의 현수교에 비해 주형의 강성을 효율적으로 사용할 수 있고 미관이 탁월할 뿐 더러 주위환경에 따라 가설방법과 구조계를 변화시킬 수 있는 적응성이 뛰어나다. 이와 같은 측면 때문에 사장교는 현대 중.장대교량을 대표하는 형식으로 점차 그 영역을 넓혀가고 있다. 국내에서도 올림픽대교를 비롯한 몇개의 사장교가 건설되었으며 이와 같은 경험을 바탕으로 순수 국내기술에 의해 세계에서 10위권에 드는 장대사장교인 서해대교가 설계되기에 이르렀다. 이와 같은 경험의 조각들이 모여 국내 토목설계의 비약을 이룰 수 있는 전환점이 될 것임을 믿어 의심치 않는다.

  • PDF

Numerical study on impact noise control of PC slab coupled with viscoelastic material (점탄성재료가 결합된 PC슬래브의 바닥충격음 제어에 관한 수치해석 연구)

  • Hwang, Jae-Seung;Hong, Gun-Ho;Park, Hong-Geun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1160-1166
    • /
    • 2007
  • In this study, a new slab system that adjoint precast slabs are connected each other by viscoelastic material is proposed and numerical analysis is performed to evaluate the effect of the slab system on the vibration and noise control. Substructuring is introduced to develope the equation of motion of the slab system and the optimal properties of viscoelastic material are calculated. For the performance evaluation of the new slab system, the sound power and acceleration of the slab are compared with those of two way slab and the slab which the viscoelastic material is not connected. Numerical results show that the sound power of the new slab system can be reduced an amount of 6dB.

  • PDF

Equivalent Shrinkage Strain For Steel-Concrete Composite Girder Bridges (합성거더교의 등가 건조수축 변형률)

  • Bae, DooByong;Jung, Dae Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.135-144
    • /
    • 2004
  • Since Modern bridges have a tendency to make the spans continuous and longer, the effect of concrete shrinkage and creep is very important and must be evaluated appropriately for the durability and safety of steel-concrete composite bridges. However, highway design specification in current use prescribes $180^{1\;2}$ as the final shrinkage strain. which is for less value than one resulted from many experimental researches and cause some problems in the construction of composite bridges due to the understimation of shrinkage strain. Thus, in this paper nonlinear analysis with time-steps applying the CEB-FIP(90) provision have been conducted for plate girder bridge, box girder bridge and Preflex beam bridge and the linear equivalent shrinkage strain for the design of composite bridges. which produces the stress equal to the values from the nonlinear analysis, has been calculated by comparing the results with the values following highway design specification. The results yield appropriately double values than $180^{1\;2}$ which highway design specification prescribes.