• Title/Summary/Keyword: 합성기둥

Search Result 185, Processing Time 0.027 seconds

Experimental Test for Seismic Performance of PCS Structural System (PCS 구조 시스템의 내진 성능 분석)

  • Park, Soon-Kyu;Yeo, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.313-322
    • /
    • 2007
  • The PCS system, which consists of precast concrete column and steel beam, is a kind of composite structural systems. In this paper, experimental study has been conducted to analyze seismic performance of bolted beam-to-column connections for the PCS system. Based on experimental results from the seismic testing of eight interior PCS specimens, it shows that behavior of PCS system is satisfactory to seismic performance criteria of ACI such as strength deterioration, stiffness degradation and energy dissipation capacity except initial stiffness. All of the specimens maintain their strength at large levels of story drift without significant loss of stiffness and show high ductility level for inelastic behavior. The energy dissipation capacity is two times greater than requirement of ACI criterion. But the initial stiffness of all specimens does not satisfy ACI criterion, and this phenomenon is similar to the other composite structural systems such as RCS, CFT system.

An Experimental Study of Improving Fire Performance with Steel-fibers for Internally Anchored Square Composite Columns (내화성능 개선을 위한 강섬유 보강 내부 앵커형 각형강관 합성기둥의 실험연구)

  • Kim, Sun Hee;Yom, Kong Soo;Kim, Yong Hwan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.499-509
    • /
    • 2014
  • This study focuses on mixing steel fiber in the concrete to improve the ductility and toughness of the columns. The purpose of the study is to evaluate the load capacity and deformation capacity associated with the amount of steel fiber and loading condition and to analyze the interplay between the steel fiber reinforced concrete and the welding built-up square tube in terms of structure and fire resistance performance. Reinforcement of concrete with steel fiber(Vf=0.375%), when cross-section shape and boundary condition (load ratio) remained unchanged, improved fire resistance performance by 1.1~1.3 times. It is deemed that the area resisting thermal load increased and fire resistance performance was improved since the concrete reinforced with steel fiber restrained cracking. In addition, the fact that the cross-sections of the concrete were barely damaged indicates that load share capacity was greatly improved.

Estimation Formula for Shear Strength of RCS Beam-Column Joint (RCS 보-기둥 접합부의 전단강도 산정식 평가)

  • Chang, Kug-Kwan;Jeon, Choong-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • This study is on the shear strength of the internal joints of RCS composite structure consisting of reinforced concrete column and steel beam. As a newly structure system, the composite system has been developed to fully utilize the advantages of reinforced concrete column and steel beam, which also include economic and practical joint detail. Nevertheless stress transfer mechanism and structural behavior of the joints had not been still clearly revealed and shown much difference from the proposed equation. In this study, by observing the crossing of reinforced concrete column through steel beam to the RCS structure beam type, thirty seven shear failure specimens were selected and applied to the 5 major equations which is used to calculate the shear strength of RCS joint. Through the regression analysis, modified equation which is more reliable and approximate results for shear strength of RCS joints was proposed.

A Study on the Lifting Progress for Composite Precast Concrete Members of Green Frame (그린 프레임 합성 PC부재의 양중공정 분석 연구)

  • Joo, Jin-Kyu;Kim, Shin-Eun;Lee, Gun-Jea;Kim, Sun-Kuk;Lee, Sung-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.3
    • /
    • pp.34-42
    • /
    • 2012
  • Green frame technology intended to facilitate the remodeling of apartment housing complexes in Korea and extend their service life has been developed. Green frame design is a Rahmen structure using composite precast concrete members and, unlike a bearing-wall structure, lifting and installing structural members accounts for major steps of structural construction. Therefore, if green frame structure construction is to be scheduled appropriately, systematic lifting plan needs to be developed in advance. Development of lifting plan also requires unit lifting process of composite PC members (columns and beams) that consist of green frame to be analyzed first. Therefore, this study attempts to analyze the lifting process of composite PC members used in green frame structure. To that end, lifting procedure and time of composite PC column and beam are estimated and applied to a project case to analyze the lifting cycle of reference floor. Outcomes produced herein will be used as key data for development of lifting plan in subsequent green frame structure construction.

Deformation Capacity of Existing Moment Connections retrofitted with Horizontal Stiffeners (수평스티프너로 보강된 모멘트 접합부의 변형능력)

  • Oh, Sang-Hoon;Kim, Young-Ju;Moon, Tae-Sup
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.220-227
    • /
    • 2005
  • 최근에 수행된 철골모멘트 접합부의 실험 및 해석결과에 의하면, 기둥으로 각형강관을 가진 접합부가 H형강을 기둥으로 사용하는 접합부에 실험체에 비해서 조기에 스캘럽 단부에서 취성파단이 발생하는 열등한 변형능력을 나타냈다. 이는 각형강관 기둥의 면외변형에 따른 보 웨브의 모멘트 전달효율의 저하, 스캘럽이 가지는 노치효과 및 합성보의 구속효과가 주요원인으로 밝혀졌다. 실험결과는 또한 개선된 수평스티프너로 하부 플랜지를 보강한 실험체는 우수한 변형능력을 가짐을 보였다. 본 연구에서는 이러한 영향을 고려하여, 다양한 수평스티프너로 보강된 접합부에 관한 유한요소해석을 실시하였다. 해석결과를 바탕으로 파일럿 테스트를 실시한 결과, 수평스티프너로 보강된 RBS 접합부 (SR)와 연장된 수평스티프너를 가진 접합부(LH)는 우수한 변형능력을 보였다.

  • PDF

Behavior of Concrete-Filled Square Tubular Beam-Column under Cyclic Load (반복하중을 받는 콘크리트충전 각형강관 보-기둥의 거동)

  • Kang, Chang-Hoon;Moon, Tae-Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.387-395
    • /
    • 2000
  • The purpose of this research is to evaluate the capacity of strength and plastic deformation of those members, and provide experimental data on the seismic behavior of these members as a basis for developing guidelines for designing seismically resistant concrete-filled steel tubular columns. Eighteen cantilever-type specimens were tested under constant axial load and cyclically lateral load as models of bottom columns in high-rise building. The parameters studied in the test program included, are width-thickness ratio of steel tube, slenderness ratio (Lo/D) and axial force ratio. From the test results, the effects of parameters on the strength, the deformation capacity, energy absorption capacity are discussed. The specimen flexural capacity under combined axial and lateral loading was found to be almost accurately predicted by criteria AIJ and AISC-LRFD providing conservative results. Therefore KSSC for encased composite column can be applied to the concrete filled column if composite section and elastic modulus are modified according to AIJ and AISC-LRFD. Finally, the proposed flexural capacity considering confinement effects is a food agreement on the tests results.

  • PDF

Compressive Behavior of Precast Concrete Column with Hollow Corresponding to Hollow Ratio (중공비율에 따른 중공 프리캐스트 철근콘크리트 기둥의 압축거동)

  • Lee, Seung-Jun;Seo, Soo-Yeon;Pei, Wenlong;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.441-448
    • /
    • 2014
  • From several researches, recently, it was found that using hollowed precast concrete (HPC) column made more compact concrete casting in joint region possible than using normal solid PC (Precast concrete) column. Therefore, the rigidity of joints can be improved like those of monolithic reinforced concrete (RC). After filling the hollow with grout concrete, however, it is expected that the HPC column behaviors like composite structure since PC element and grout concrete have different materials as well as there is a contact surface between two elements. These may affect the structural behavior and strength of the composite column. A compressive strength test was performed for the HPC column with parameter of hollow ratio for the case with and without grout in the hollow and the result is presented in this paper. The hollow ratios in the test are 35, 50 and 59% of whole section of column. Concentrated axial force was applied to top of the specimens supported as pin connection for both ends. In addition, finite element (FE) analysis was performed to simulate the failure behavior of HPC column for axial compression. As a result, it was found that the hollow ratio did not affect the initial stiffness of HPC filled with grout regardless of the strength difference of HPC and grout. However the strength was increased inversely corresponding to the hollow ratio. The structural capacity of HPC without grout closely related to the hollow size. Especially, the local collapse governs the overall failure when the thickness of HPC is too thin. Based on these effect, a suitable equation was suggested for calculation of the compressive strength of HPC column with or without grout. FE analysis considering the contact surface between HPC and grout produced a good result matched to the test result.

pH 조절을 통한 다양한 형태를 지닌 HAP의 합성과 물성 연구

  • Lee, So-Hyeon;Gwon, Gi-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.200.2-200.2
    • /
    • 2014
  • HAP란 Hydroxylapatite의 준말이며 우리말로는 수산화인회석으로도 불린다. 본 실험에서는 다양한 농도의 염기조건(NaOH $10^{-3}$, $10^{-2}$, $10^{-1}$, 1, 10, 30 M)에서 서로 다른 형태의 HAP를 수열합성법을 통해 합성하였다. XRD (X-ray powder diffraction) 로 관찰한 결과 NaOH 농도 $10^{-1}M$ 이상에서부터 HAP가 합성됨을 확인하였다. Transmission and scaning electron microscopy 를 이용하여 HAP의 모양과 표면을 관찰해본 결과, NaOH의 농도가 진해 질수록 육각기둥의 형태에서 사각형으로 변화하였다. 6개의 각각의 HAP의 표면에 Pd (Palladium)을 도입하고 그 양을 정량화 하였다. 합성된 Pd-HAP를 C-C coupling reaction에 이종상 촉매로 사용하였다.

  • PDF

Development of Design Program for CFFT Structure (CFFT구조의 설계프로그램 개발)

  • Choi, Young-Min;Hwang, Yoon-Koog;Lee, Young-Ho;Lee, Jung-Howan;Kim, Dong-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.549-552
    • /
    • 2009
  • 본 논문에서는 재료적 성능이 우수하며 경량재료로서 최근 건설구조물에 활용하고자 하는 연구가 활발히 진행되고 있는 섬유보강재료(FRP : Fiber Reinforced Polymer)를 이용한 합성구조인 CFFT(Concrete Filled FRP Tube)의 설계프로그램을 개발하여 제안하고자 하였다. 먼저, CFFT구조는 FRP관에 의해 철근콘크리트가 구속되는 구조로서 기둥과 같이 축력이 도입되는 경우 포아송효과에 의한 변형을 FRP관이 구속효과를 줌으로써 콘크리트의 역학적 거동을 개선하게 되는데 본 연구에서는 실험에 의해 검증된 식을 제시하였으며 이를 바탕으로 CFFT구조를 설계하는 알고리즘을 제안하였다. 또한 CFFT구조는 FRP관의 구속으로 인해 고강도콘크리트와 긴장재의 도입이 가능한 구조로서 이에 대한 설계도 포함하였다. 그러나 이방성재료인 FRP의 설계와 동시에 FRP관에 의한 구속효과를 고려하는 CFFT구조의 설계는 일반 실무설계자들에게는 다소 난해한 작업으로써 전산화 설계프로그램의 필요성이 대두되어 본 연구에서 CFFT구조의 설계프로그램을 개발하였다. 개발된 설계프로그램의 검증을 위해 일반 철근콘크리트기둥, CFFT기둥, 고강도콘크리트와 PS긴장재를 도입한 CFFT기둥을 설계한 결과, 매우 실용적이며 타당한 설계가 수행될 수 있음을 확인하였다.

  • PDF