• Title/Summary/Keyword: 합성곱 신경망

Search Result 539, Processing Time 0.022 seconds

Road Surface Damage Detection Based on Semi-supervised Learning Using Pseudo Labels (수도 레이블을 활용한 준지도 학습 기반의 도로노면 파손 탐지)

  • Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.71-79
    • /
    • 2019
  • By using convolutional neural networks (CNNs) based on semantic segmentation, road surface damage detection has being studied. In order to generate the CNN model, it is essential to collect the input and the corresponding labeled images. Unfortunately, such collecting pairs of the dataset requires a great deal of time and costs. In this paper, we proposed a road surface damage detection technique based on semi-supervised learning using pseudo labels to mitigate such problem. The model is updated by properly mixing labeled and unlabeled datasets, and compares the performance against existing model using only labeled dataset. As a subjective result, it was confirmed that the recall was slightly degraded, but the precision was considerably improved. In addition, the $F_1-score$ was also evaluated as a high value.

Convolutional neural network based traffic sound classification robust to environmental noise (합성곱 신경망 기반 환경잡음에 강인한 교통 소음 분류 모델)

  • Lee, Jaejun;Kim, Wansoo;Lee, Kyogu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.469-474
    • /
    • 2018
  • As urban population increases, research on urban environmental noise is getting more attention. In this study, we classify the abnormal noise occurring in traffic situation by using a deep learning algorithm which shows high performance in recent environmental noise classification studies. Specifically, we classify the four classes of tire skidding sounds, car crash sounds, car horn sounds, and normal sounds using convolutional neural networks. In addition, we add three environmental noises, including rain, wind and crowd noises, to our training data so that the classification model is more robust in real traffic situation with environmental noises. Experimental results show that the proposed traffic sound classification model achieves better performance than the existing algorithms, particularly under harsh conditions with environmental noises.

Image Denoising Via Structure-Aware Deep Convolutional Neural Networks (구조 인식 심층 합성곱 신경망 기반의 영상 잡음 제거)

  • Park, Gi-Tae;Son, Chang-Hwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.85-95
    • /
    • 2018
  • With the popularity of smartphones, most peoples have been using mobile cameras to capture photographs. However, due to insufficient amount of lights in a low lighting condition, unwanted noises can be generated during image acquisition. To remove the noise, a method of using deep convolutional neural networks is introduced. However, this method still lacks the ability to describe textures and edges, even though it has made significant progress in terms of visual quality performance. Therefore, in this paper, the HOG (Histogram of Oriented Gradients) images that contain information about edge orientations are used. More specifically, a method of learning deep convolutional neural networks is proposed by stacking noise and HOG images into an input tensor. Experiment results confirm that the proposed method not only can obtain excellent result in visual quality evaluations, compared to conventional methods, but also enable textures and edges to be improved visually.

LeafNet: Plants Segmentation using CNN (LeafNet: 합성곱 신경망을 이용한 식물체 분할)

  • Jo, Jeong Won;Lee, Min Hye;Lee, Hong Ro;Chung, Yong Suk;Baek, Jeong Ho;Kim, Kyung Hwan;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • Plant phenomics is a technique for observing and analyzing morphological features in order to select plant varieties of excellent traits. The conventional methods is difficult to apply to the phenomics system. because the color threshold value must be manually changed according to the detection target. In this paper, we propose the convolution neural network (CNN) structure that can automatically segment plants from the background for the phenomics system. The LeafNet consists of nine convolution layers and a sigmoid activation function for determining the presence of plants. As a result of the learning using the LeafNet, we obtained a precision of 98.0% and a recall rate of 90.3% for the plant seedlings images. This confirms the applicability of the phenomics system.

Real-time Wave Overtopping Detection and Measuring Wave Run-up Heights Based on Convolutional Neural Networks (CNN) (합성곱 신경망(CNN) 기반 실시간 월파 감지 및 처오름 높이 산정)

  • Seong, Bo-Ram;Cho, Wan-Hee;Moon, Jong-Yoon;Lee, Kwang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.243-250
    • /
    • 2022
  • The purpose of this study was to propose technology to detect the wave in the image in real-time, and calculate the height of the wave-overtopping through image analysis using artificial intelligence. It was confirmed that the proposed wave overtopping detection system proposed in this study could detect the occurring of wave overtopping, even in severe weather and at night in real-time. In particular, a filtering algorithm for determining if the wave overtopping event was used, to improve the accuracy of detecting the occurrence of wave overtopping, based on a convolutional neural networks to catch the wave overtopping in CCTV images in real-time. As a result, the accuracy of the wave overtopping detection through AP50 was reviewed as 59.6%, and the speed of the overtaking detection model was 70fps based on GPU, confirming that accuracy and speed are suitable for real-time wave overtopping detection.

Object Recognition Using Convolutional Neural Network in military CCTV (합성곱 신경망을 활용한 군사용 CCTV 객체 인식)

  • Ahn, Jin Woo;Kim, Dohyung;Kim, Jaeoh
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.2
    • /
    • pp.11-20
    • /
    • 2022
  • There is a critical need for AI assistance in guard operations of Army base perimeters, which is exacerbated by changes in the national defense and security environment such as force reduction. In addition, the possibility for human error inherent to perimeter guard operations attests to the need for an innovative revamp of current systems. The purpose of this study is to propose a real-time object detection AI tailored to military CCTV surveillance with three unique characteristics. First, training data suitable for situations in which relatively small objects must be recognized is used due to the characteristics of military CCTV. Second, we utilize a data augmentation algorithm suited for military context applied in the data preparation step. Third, a noise reduction algorithm is applied to account for military-specific situations, such as camouflaged targets and unfavorable weather conditions. The proposed system has been field-tested in a real-world setting, and its performance has been verified.

Skin Disease Classification Technique Based on Convolutional Neural Network Using Deep Metric Learning (Deep Metric Learning을 활용한 합성곱 신경망 기반의 피부질환 분류 기술)

  • Kim, Kang Min;Kim, Pan-Koo;Chun, Chanjun
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.45-54
    • /
    • 2021
  • The skin is the body's first line of defense against external infection. When a skin disease strikes, the skin's protective role is compromised, necessitating quick diagnosis and treatment. Recently, as artificial intelligence has advanced, research for technical applications has been done in a variety of sectors, including dermatology, to reduce the rate of misdiagnosis and obtain quick treatment using artificial intelligence. Although previous studies have diagnosed skin diseases with low incidence, this paper proposes a method to classify common illnesses such as warts and corns using a convolutional neural network. The data set used consists of 3 classes and 2,515 images, but there is a problem of lack of training data and class imbalance. We analyzed the performance using a deep metric loss function and a cross-entropy loss function to train the model. When comparing that in terms of accuracy, recall, F1 score, and accuracy, the former performed better.

WDENet: Wavelet-based Detail Enhanced Image Denoising Network (Wavelet 기반의 영상 디테일 향상 잡음 제거 네트워크)

  • Zheng, Jun;Wee, Seungwoo;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.725-737
    • /
    • 2021
  • Although the performance of cameras is gradually improving now, there are noise in the acquired digital images from the camera, which acts as an obstacle to obtaining high-resolution images. Traditionally, a filtering method has been used for denoising, and a convolutional neural network (CNN), one of the deep learning techniques, has been showing better performance than traditional methods in the field of image denoising, but the details in images could be lost during the learning process. In this paper, we present a CNN for image denoising, which improves image details by learning the details of the image based on wavelet transform. The proposed network uses two subnetworks for detail enhancement and noise extraction. The experiment was conducted through Gaussian noise and real-world noise, we confirmed that our proposed method was able to solve the detail loss problem more effectively than conventional algorithms, and we verified that both objective quality evaluation and subjective quality comparison showed excellent results.

Prediction of Stacking Angles of Fiber-reinforced Composite Materials Using Deep Learning Based on Convolutional Neural Networks (합성곱 신경망 기반의 딥러닝을 이용한 섬유 강화 복합재료의 적층 각도 예측)

  • Hyunsoo Hong;Wonki Kim;Do Yoon Jeon;Kwanho Lee;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.48-52
    • /
    • 2023
  • Fiber-reinforced composites have anisotropic material properties, so the mechanical properties of composite structures can vary depending on the stacking sequence. Therefore, it is essential to design the proper stacking sequence of composite structures according to the functional requirements. However, depending on the manufacturing condition or the shape of the structure, there are many cases where the designed stacking angle is out of range, which can affect structural performance. Accordingly, it is important to analyze the stacking angle in order to confirm that the composite structure is correctly fabricated as designed. In this study, the stacking angle was predicted from real cross-sectional images of fiber-reinforced composites using convolutional neural network (CNN)-based deep learning. Carbon fiber-reinforced composite specimens with several stacking angles were fabricated and their cross-sections were photographed on a micro-scale using an optical microscope. The training was performed for a CNN-based deep learning model using the cross-sectional image data of the composite specimens. As a result, the stacking angle can be predicted from the actual cross-sectional image of the fiber-reinforced composite with high accuracy.

Efficient Collecting Scheme the Crack Data via Vector based Data Augmentation and Style Transfer with Artificial Neural Networks (벡터 기반 데이터 증강과 인공신경망 기반 특징 전달을 이용한 효율적인 균열 데이터 수집 기법)

  • Yun, Ju-Young;Kim, Donghui;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.667-669
    • /
    • 2021
  • 본 논문에서는 벡터 기반 데이터 증강 기법(Data augmentation)을 제안하여 학습 데이터를 구축한 뒤, 이를 합성곱 신경망(Convolutional Neural Networks, CNN)으로 실제 균열과 가까운 패턴을 표현할 수 있는 프레임워크를 제안한다. 건축물의 균열은 인명 피해를 가져오는 건물 붕괴와 낙하 사고를 비롯한 큰 사고의 원인이다. 이를 인공지능으로 해결하기 위해서는 대량의 데이터 확보가 필수적이다. 하지만, 실제 균열 이미지는 복잡한 패턴을 가지고 있을 뿐만 아니라, 위험한 상황에 노출되기 때문에 대량의 데이터를 확보하기 어렵다. 이러한 데이터베이스 구축의 문제점은 인위적으로 특정 부분에 변형을 주어 데이터양을 늘리는 탄성왜곡(Elastic distortion) 기법으로 해결할 수 있지만, 본 논문에서는 이보다 향상된 균열 패턴 결과를 CNN을 활용하여 보여준다. 탄성왜곡 기법보다 CNN을 이용했을 때, 실제 균열 패턴과 유사하게 추출된 결과를 얻을 수 있었고, 일반적으로 사용되는 픽셀 기반 데이터가 아닌 벡터 기반으로 데이터 증강을 설계함으로써 균열의 변화량 측면에서 우수함을 보였다. 본 논문에서는 적은 개수의 균열 데이터를 입력으로 사용했음에도 불구하고 균열의 방향 및 패턴을 다양하게 생성하여 쉽게 균열 데이터베이스를 구축할 수 있었다. 이는 장기적으로 구조물의 안정성 평가에 이바지하여 안전사고에 대한 불안감에서 벗어나 더욱 안전하고 쾌적한 주거 환경을 조성할 것으로 기대된다.

  • PDF