Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.11a
/
pp.388-389
/
2022
Recently, AI (Artificial Intelligence) has been applied to various technologies such as automatic driving, robot and smart communication. Currently, AI system is developed by software-based method using tensor flow, and GPU (Graphic Processing Unit) is employed for processing unit. However, if software-based method employing GPU is used for AI applications, there is a problem that we can not change the internal circuit of processing unit. In this method, if high-level jobs are required for AI system, we need high-performance GPU, therefore, we have to change GPU or graphic card to perform the jobs. In this work, we developed a CNN-based FPGA (Field Programmable Gate Array) chip to solve this problem.
Proceedings of the Korea Information Processing Society Conference
/
2018.05a
/
pp.398-401
/
2018
본 연구에서는 심충 합성곱 신경망(Deep CNN)과 Connectionist Temporal Classification (CTC) 알고리즘을 사용하여 강제정렬 (force-alignment)이 이루어진 코퍼스 없이도 학습이 가능한 음소 인식 모델을 제안한다. 최근 해외에서는 순환 신경망(RNN)과 CTC 알고리즘을 사용한 딥 러닝 기반의 음소 인식 모델이 활발히 연구되고 있다. 하지만 한국어 음소 인식에는 HMM-GMM 이나 인공 신경망과 HMM 을 결합한 하이브리드 시스템이 주로 사용되어 왔으며, 이 방법 은 최근의 해외 연구 사례들보다 성능 개선의 여지가 적고 전문가가 제작한 강제정렬 코퍼스 없이는 학습이 불가능하다는 단점이 있다. 또한 RNN 은 학습 데이터가 많이 필요하고 학습이 까다롭다는 단점이 있어, 코퍼스가 부족하고 기반 연구가 활발하게 이루어지지 않은 한국어의 경우 사용에 제약이 있다. 이에 본 연구에서는 강제정렬 코퍼스를 필요로 하지 않는 CTC 알고리즘을 도입함과 동시에, RNN 에 비해 더 학습 속도가 빠르고 더 적은 데이터로도 학습이 가능한 합성곱 신경망(CNN)을 사용하여 딥 러닝 모델을 구축하여 한국어 음소 인식을 수행하여 보고자 하였다. 이 모델을 통해 본 연구에서는 한국어에 존재하는 49 가지의 음소를 추출하는 세 종류의 음소 인식기를 제작하였으며, 최종적으로 선정된 음소 인식 모델의 PER(phoneme Error Rate)은 9.44 로 나타났다. 선행 연구 사례와 간접적으로 비교하였을 때, 이 결과는 제안하는 모델이 기존 연구 사례와 대등하거나 조금 더 나은 성능을 보인다고 할 수 있다.
최근 생체 정보를 이용한 사용자 인증 기술이 발전하면서 이를 모바일 기기에 적용하는 사례가 크게 증가하고 있다. 특히, 얼굴 기반 인증 방식은 비접촉식이며 사용이 편리하여 적용 범위가 점점 확대되고 있는 추세이다. 그러나, 사용자의 얼굴 사진이나 동영상 등을 이용한 위변조가 용이하기 때문에 모바일 기기 내 보안 유지에 어려움을 야기한다. 본 고에서는 이러한 문제를 해결하기 위해 최근 활발히 연구되고 있는 심층신경망 기반 얼굴 위변조 검출 연구의 최신 동향을 소개하고자 한다. 먼저, 기본 합성곱 신경망 구조부터 생성모델 기반의 위변조 검출 방법까지 다양한 신경망 구조를 이용한 위변조 검출 방법에 대해 설명한다. 또한, 심층신경망 학습을 위해 사용되는 얼굴 위변조 데이터셋에 대해서도 간략히 살펴보고자 한다.
The Journal of the Convergence on Culture Technology
/
v.3
no.4
/
pp.171-175
/
2017
Recently, Training of the convolutional neural network (CNN) entails many iterative computations. Therefore, a method of accelerating the training speed through parallel processing using the hardware specifications of GPGPU is actively researched. In this paper, the operations of the feature extraction unit and the classification unit are divided into blocks and threads of GPGPU and processed in parallel. Convolution and Pooling operations of the feature extraction unit are processed in parallel at once without sequentially processing. As a result, proposed method improved the training time about 314%.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.12
/
pp.1574-1580
/
2020
Traditional pose estimation methods include using special devices or images through image processing. The disadvantage of using a device is that the environment in which the device can be used is limited and costly. The use of cameras and image processing has the advantage of reducing environmental constraints and costs, but the performance is lower. CNN(Convolutional Neural Networks) were studied for pose estimation just using only camera without these disadvantage. Various techniques were proposed to increase cognitive performance. In this paper, the effect of the skip connection on the network was experimented by using various skip connections on the joint recognition of the hand. Experiments have confirmed that the presence of additional skip connections other than the basic skip connections has a better effect on performance, but the network with downward skip connections is the best performance.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.614-615
/
2018
본 연구는 심층학습 기법을 활용하여 양극 데이터에 대해 학습된 모델로부터 예측된 결과를 바탕으로 언어 장애 여부를 판단하고, 이를 바탕으로 효율적인 언어 치료를 수행할 수 있는 방법론을 제시한다. 발화자의 개별 발화에 대해 데이터화를 하여 합성곱 신경망 모델(CNN)을 학습한다. 이를 이용하여 발화자의 연령 집단을 예측하고 결과를 분석하여 발화자의 언어 연령 및 장애 여부를 판단을 할 수 있다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.642-644
/
2018
화행(Speech-act)이란 어떤 목적을 달성하기 위해 발화를 통해 이루어지는 화자의 행위를 뜻하며, 화행 분석(Speech-act analysis)이란 주어진 발화의 화행을 결정하는 것을 뜻한다. 문장 유형과 양태는 화행의 일종으로, 문장 유형의 경우 화자의 기본적인 발화 의도에 따라 평서문, 명령문, 청유문, 의문문, 감탄문의 다섯 가지 유형으로 나눌 수 있고, 양태는 문장이 표현하는 명제나, 명제가 기술하는 상황에 대해서 화자가 갖는 의견이나 태도를 말한다. 본 논문에서는 종결어미와 보조용언으로부터 비교적 간단하게 추출 가능한 문장 유형과 양태 정보를 활용하여 대화체 발화문의 화행 분석 성능을 높이는 방법을 보인다. 본 논문에서 제안하는 모델은 합성곱 신경망(CNN)을 사용한 기본 모델에 비해 0.52%p 성능 향상을 보였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.11a
/
pp.66-69
/
2017
본 논문에서는 깊은 합성 곱 신경망 (Deep Convolutional Neural Network) 를 이용해서 SAR (Synthetic Aperture Radar) 영상의 반전 잡음 (speckle noise) 성분을 제거하는 기법을 제안하고자 한다. Deep Convolutional Neural Network는 이미지의 데이터 특성에 적합한 딥 러닝 방법이고, 이는 SAR 위성영상의 반전 잡음 제거에 사용해도 효과적이다. 반전 잡음 필터 모델 추정을 위한 학습은 임의로 반전 잡음을 합성한 트레이닝 이미지들과 원본 트레이닝 이미지들을 이용한 회귀모델을 통해 진행된다. 학습을 통해 얻은 반전 잡음 필터는 기존 알고리즘에 비해 우수한 외곽선 보존 성능을 나타냄을 확인하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.10a
/
pp.311-312
/
2018
This paper proposes an image processing system based on the Convolution Neural Network technique. The image classification was performed using the composite neural network model and the images were classified with accuracy of 84% or more. The proposed system is implemented to operate on various platforms. When the system is used in the classification of images, the efficiency is higher because it is higher than the accuracy of the existing model.
Kim, Jeong-Hwan;Seo, Seung-Yeon;Song, Chul-Gyu;Kim, Kyeong-Seop
Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.397-398
/
2019
망막혈관 영상에서(retinal image) 혈관의 모양 또는 생성변화를 효과적으로 검진하기 위해서 망막혈관을 자동적으로 분리하는 영상분할 기법의 개발은 매우 중요한 사안이다. 이를 위해서 주로 망막혈관영상의 잡음을 억제하고 또한 혈관의 명암대비도(contrast)를 증가시키는 전처리 과정을 거쳐서 혈관의 국부적인 화소값의 변화, 방향성을 판별하여 혈관을 자동적으로 검출하는 방법들이 제시되어왔으며 최근에는 합성곱 신경망(CNN) 딥러닝 학습모델을 활용한 망막혈관 분리 알고리즘들이 제시되고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.