• 제목/요약/키워드: 합성곱 인공신경망

검색결과 125건 처리시간 0.026초

합성곱 순환 신경망 구조를 이용한 지진 이벤트 분류 기법 (Earthquake events classification using convolutional recurrent neural network)

  • 구본화;김관태;장수;고한석
    • 한국음향학회지
    • /
    • 제39권6호
    • /
    • pp.592-599
    • /
    • 2020
  • 본 논문은 다양한 지진 이벤트 분류를 위해 지진 데이터의 정적인 특성과 동적인 특성을 동시에 반영할 수 있는 합성곱 순환 신경망(Convolutional Recurrent Neural Net, CRNN) 구조를 제안한다. 중규모 지진뿐만 아니라 미소 지진, 인공 지진을 포함한 지진 이벤트 분류 문제를 해결하려면 효과적인 특징 추출 및 분류 방법이 필요하다. 본 논문에서는 먼저 주의 기반 합성곱 레이어를 통해 지진 데이터의 정적 특성을 추출 하게 된다. 추출된 특징은 다중 입력 단일 출력 장단기메모리(Long Short-Term Memory, LSTM) 네트워크 구조에 순차적으로 입력되어 다양한 지진 이벤트 분류를 위한 동적 특성을 추출하게 되며 완전 연결 레이어와 소프트맥스 함수를 통해 지진 이벤트 분류를 수행한다. 국내외 지진을 이용한 모의 실험 결과 제안된 모델은 다양한 지진 이벤트 분류에 효과적인 모습을 보여 주었다.

벡터 기반 데이터 증강과 인공신경망 기반 특징 전달을 이용한 효율적인 균열 데이터 수집 기법 (Efficient Collecting Scheme the Crack Data via Vector based Data Augmentation and Style Transfer with Artificial Neural Networks)

  • 윤주영;김동희;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.667-669
    • /
    • 2021
  • 본 논문에서는 벡터 기반 데이터 증강 기법(Data augmentation)을 제안하여 학습 데이터를 구축한 뒤, 이를 합성곱 신경망(Convolutional Neural Networks, CNN)으로 실제 균열과 가까운 패턴을 표현할 수 있는 프레임워크를 제안한다. 건축물의 균열은 인명 피해를 가져오는 건물 붕괴와 낙하 사고를 비롯한 큰 사고의 원인이다. 이를 인공지능으로 해결하기 위해서는 대량의 데이터 확보가 필수적이다. 하지만, 실제 균열 이미지는 복잡한 패턴을 가지고 있을 뿐만 아니라, 위험한 상황에 노출되기 때문에 대량의 데이터를 확보하기 어렵다. 이러한 데이터베이스 구축의 문제점은 인위적으로 특정 부분에 변형을 주어 데이터양을 늘리는 탄성왜곡(Elastic distortion) 기법으로 해결할 수 있지만, 본 논문에서는 이보다 향상된 균열 패턴 결과를 CNN을 활용하여 보여준다. 탄성왜곡 기법보다 CNN을 이용했을 때, 실제 균열 패턴과 유사하게 추출된 결과를 얻을 수 있었고, 일반적으로 사용되는 픽셀 기반 데이터가 아닌 벡터 기반으로 데이터 증강을 설계함으로써 균열의 변화량 측면에서 우수함을 보였다. 본 논문에서는 적은 개수의 균열 데이터를 입력으로 사용했음에도 불구하고 균열의 방향 및 패턴을 다양하게 생성하여 쉽게 균열 데이터베이스를 구축할 수 있었다. 이는 장기적으로 구조물의 안정성 평가에 이바지하여 안전사고에 대한 불안감에서 벗어나 더욱 안전하고 쾌적한 주거 환경을 조성할 것으로 기대된다.

  • PDF

딥러닝을 위한 영역기반 합성곱 신경망에 의한 항공영상에서 건물탐지 평가 (Evaluation of Building Detection from Aerial Images Using Region-based Convolutional Neural Network for Deep Learning)

  • 이대건;조은지;이동천
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.469-481
    • /
    • 2018
  • 딥러닝은 인간의 학습 및 인지능력을 닮은 인공지능을 실현하기 위해 여러 분야에서 활용하고 있으며, 높은 사양의 컴퓨팅 파워가 요구되고 연산 시간이 많이 소요되는 복잡한 구조의 인공신경망에 의한 딥러닝은 컴퓨터 사양이 향상됨에 따라 성능이 개선된 다양한 딥러닝 모델이 개발되고 있다. 본 논문의 주요 목적은 영상의 딥러닝을 위한 합성곱 신경망 중에서 최근에 FAIR (Facebook AI Research)에서 개발한 Mask R-CNN을 이용하여 항공영상에서 건물을 탐지하고 성능을 평가하는 것이다. Mask R-CNN은 영역기반의 합성곱 신경망으로서 픽셀 정확도까지 객체를 의미적으로 분할하기 위한 딥러닝 모델로서 성능이 가장 우수한 것으로 평가받고 있다. 딥러닝 모델의 성능은 신경망 구조뿐 아니라 학습 능력에 의해 결정된다. 이를 위해 본 논문에서는 모델의 학습에 이용한 영상에 다양한 변화를 주어 학습 능력을 분석하였으며, 딥러닝의 궁극적 목표인 범용화의 가능성을 평가하였다. 향후 연구방안으로는 영상에만 의존하지 않고 다양한 공간정보 데이터를 복합적으로 딥러닝 모델의 학습에 이용하여 딥러닝의 신뢰성과 범용화가 향상될 것으로 판단된다.

선박 종류 및 항로표지 구분이 가능한 인공지능 카메라

  • 이희용
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 추계학술대회
    • /
    • pp.377-379
    • /
    • 2022
  • 선교 상황 인식 시스템을 개발하기 위한 합성곱 신경망 기반의 인공지능카메라를 개발한다. 부이 등의 항로표지를 포함한 컨테이너선, 유조선, 자동차 운반선 등 선박 종류 구분이 가능하도록 YOLO5를 이용하여 학습을 수행하고 그 결과를 보인다.

  • PDF

합성곱 신경망을 이용한 이미지 기반 화재 감지 시스템의 구현 (Implementation of Image based Fire Detection System Using Convolution Neural Network)

  • 방상완
    • 한국전자통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.331-336
    • /
    • 2017
  • 화재 재해를 예방하기 위해 조기 화재 탐지 기술의 필요성이 증대되고 있다. 화염 및 연기를 감지하기 위해 열, 연기 및 불꽃에 대한 센서 감지 장치가 널리 사용되고 있으나, 이 시스템은 센서 주변 환경의 요소에 따라 제한된다. 이 문제들을 해결하기 위해 다수의 이미지 기반 화재 탐지 시스템이 개발되고 있다. 본 논문에서는 카메라 입력 이미지로 부터 합성곱 신경망을 이용하여 연기 이미지와 불꽃 이미지에 대한 학습을 통해 특징 맵을 추출하고, 이를 사용하여 다른 입력 이미지를 연기와 불꽃으로 분류하는 이미지 기반 화재 감지 시스템을 구현하였다. 다양한 조건의 이미지를 대상으로 실험한 결과 연기와 불꽃으로 분류하는데 우수한 성능을 보여주었다.

시분할 특징 융합 합성곱 신경망을 이용한 스마트폰 사용자의 행동 검출 (Detection The Behavior of Smartphone Users using Time-division Feature Fusion Convolutional Neural Network)

  • 신현준;곽내정;송특섭
    • 한국정보통신학회논문지
    • /
    • 제24권9호
    • /
    • pp.1224-1230
    • /
    • 2020
  • 스마트폰의 보급 이후 웨어러블 디바이스에 대한 관심이 높아지고 다양화되면서 사용자들의 생활에 밀접하게 연관되고 있으며, 개인화된 서비스를 제공하기 위한 방법으로 사용되고 있다. 본 논문에서는 스마트폰에 내장된 3축 가속도 센서와 3축 자이로 센서의 정보를 합성곱 신경망에 적용하여 사용자의 행동을 검출하는 방법을 제안한다. 인간의 행동은 동작의 크기와 범위에 따라서 동작을 구성하는 신호 데이터의 지속시간을 포함한 시작 시점과 끝나는 시점이 다르다. 이로 인해 합성곱 신경망에 그대로 적용하면 행동 인식 정확도에 대한 성능상의 문제가 있다. 따라서 센서 데이터를 시간의 구간에 따라 분할된 특징을 학습하는 시분할 특징 융합 합성곱 신경망(TDFFCNN: Time-Division Feature Fusion Convolutional Neural Network)을 제안하였다.

Deep CNN 기반의 한국어 음소 인식 모델 연구 (Korean Phoneme Recognition Model with Deep CNN)

  • 홍윤석;기경서;권가진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.398-401
    • /
    • 2018
  • 본 연구에서는 심충 합성곱 신경망(Deep CNN)과 Connectionist Temporal Classification (CTC) 알고리즘을 사용하여 강제정렬 (force-alignment)이 이루어진 코퍼스 없이도 학습이 가능한 음소 인식 모델을 제안한다. 최근 해외에서는 순환 신경망(RNN)과 CTC 알고리즘을 사용한 딥 러닝 기반의 음소 인식 모델이 활발히 연구되고 있다. 하지만 한국어 음소 인식에는 HMM-GMM 이나 인공 신경망과 HMM 을 결합한 하이브리드 시스템이 주로 사용되어 왔으며, 이 방법 은 최근의 해외 연구 사례들보다 성능 개선의 여지가 적고 전문가가 제작한 강제정렬 코퍼스 없이는 학습이 불가능하다는 단점이 있다. 또한 RNN 은 학습 데이터가 많이 필요하고 학습이 까다롭다는 단점이 있어, 코퍼스가 부족하고 기반 연구가 활발하게 이루어지지 않은 한국어의 경우 사용에 제약이 있다. 이에 본 연구에서는 강제정렬 코퍼스를 필요로 하지 않는 CTC 알고리즘을 도입함과 동시에, RNN 에 비해 더 학습 속도가 빠르고 더 적은 데이터로도 학습이 가능한 합성곱 신경망(CNN)을 사용하여 딥 러닝 모델을 구축하여 한국어 음소 인식을 수행하여 보고자 하였다. 이 모델을 통해 본 연구에서는 한국어에 존재하는 49 가지의 음소를 추출하는 세 종류의 음소 인식기를 제작하였으며, 최종적으로 선정된 음소 인식 모델의 PER(phoneme Error Rate)은 9.44 로 나타났다. 선행 연구 사례와 간접적으로 비교하였을 때, 이 결과는 제안하는 모델이 기존 연구 사례와 대등하거나 조금 더 나은 성능을 보인다고 할 수 있다.

딥러닝 기반의 뉴스 분석을 활용한 주제별 최신 연관단어 추출 기법 (A Topic Related Word Extraction Method Using Deep Learning Based News Analysis)

  • 김성진;김건우;이동호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.873-876
    • /
    • 2017
  • 최근 정보검색의 효율성을 위해 데이터를 분석하여 해당 데이터를 가장 잘 나타내는 연관단어를 추출 및 추천하는 연구가 활발히 이루어지고 있다. 현재 관련 연구들은 출현 빈도수를 사용하는 방법이나 LDA와 같은 기계학습 기법을 활용해 데이터를 분석하여 연관단어를 생성하는 방법을 제안하고 있다. 기계학습 기법은 결과 값을 찾는데 사용되는 특징들을 전문가가 직접 설계해야 하며 좋은 결과를 내는 적절한 특징을 찾을 때까지 많은 시간이 필요하다. 또한, 파라미터들을 직접 설정해야 하므로 많은 시간과 노력을 필요로 한다는 단점을 지닌다. 이러한 기계학습 기법의 단점을 극복하기 위해 인공신경망을 다층구조로 배치하여 데이터를 분석하는 딥러닝이 최근 각광받고 있다. 본 논문에서는 기존 기계학습 기법을 사용하는 연관단어 추출연구의 한계점을 극복하기 위해 딥러닝을 활용한다. 먼저, 인공신경망 기반 단어 벡터 생성기인 Word2Vec를 사용하여 다양한 텍스트 데이터들을 학습하고 룩업 테이블을 생성한다. 그 후, 생성된 룩업 테이블을 바탕으로 인공신경망의 한 종류인 합성곱 신경망을 활용하여 사용자가 입력한 주제어와 관련된 최근 뉴스데이터를 분석한 후, 주제별 최신 연관단어를 추출하는 시스템을 제안한다. 또한 제안한 시스템을 통해 생성된 연관단어의 정확률을 측정하여 성능을 평가하였다.

합성곱 신경망(CNN) 기반 실시간 월파 감지 및 처오름 높이 산정 (Real-time Wave Overtopping Detection and Measuring Wave Run-up Heights Based on Convolutional Neural Networks (CNN))

  • 성보람;조완희;문종윤;이광호
    • 한국항해항만학회지
    • /
    • 제46권3호
    • /
    • pp.243-250
    • /
    • 2022
  • 본 연구에서는 인공지능을 활용한 영상분석 기술을 통해 영상 내의 월파를 실시간으로 감지하고 처오름 높이를 산정하는 기술을 제안하였다. 본 연구에서 제안한 월파 감지 시스템은 실시간으로 악기상 및 야간에도 월파를 감지할 수 있음을 확인하였다. 특히, 합성곱 신경망을 적용하여 실시간으로 CCTV 영상에서 파랑의 처오름을 감지하고 월파 여부를 판단하는 여과 알고리즘을 적용하여 월파의 발생 감지에 대한 정확성을 향상시켰다. AP50을 통해 월파 감지 결과의 정확도는 59.6%로 산정되었으며, 월파 감지 모델의 속도는 GPU 기준 70fps로 실시간 감지에 적합한 정확도와 속도를 보임을 확인하였다.

합성곱 신경망을 활용한 군사용 CCTV 객체 인식 (Object Recognition Using Convolutional Neural Network in military CCTV)

  • 안진우;김도형;김재오
    • 한국시뮬레이션학회논문지
    • /
    • 제31권2호
    • /
    • pp.11-20
    • /
    • 2022
  • 병력감축 등 국방 및 안보환경의 변화에 따라 육군의 경계시스템에도 변화가 시급한 상황이다. 또한 경계작전의 특성상 인간의 실수가 번번이 발생하고 있으며 이러한 실수가 전체 경계작전의 실패로 귀결되는 상황은 경계시스템의 인공지능 도입이 필요한 것에 대한 중요한 이유이다. 본 연구의 목적은 합성곱 신경망 방법을 활용하여 군사용 CCTV에 적합한 인공지능 영상인식 시스템을 개발하는 것이다. 본 연구에서 개발한 시스템의 주요 특징은 먼저, 군사용 CCTV의 특징상 상대적으로 작은 객체를 인식해야하는 상황에 적합한 학습데이터를 활용한 것이다. 둘째, 학습용 데이터 셋에 대해 데이터 증강 알고리즘을 활용하여 군사용에 보다 적합하도록 유도한 것이다. 셋째, 군사용 영상의 위장, 악천후 등 상황을 고려하여 영상의 잡음을 개선하는 알고리즘을 적용하였다. 본 연구에서 제안하는 시스템의 성능 평가결과 객체의 인식능력이 기존 방법에 비해 우수함을 확인하였다.