• Title/Summary/Keyword: 합성곱 신경망 모델

Search Result 303, Processing Time 0.022 seconds

HSE Block : Automatic Optimization of the Number of Convolutional Layer Filters using SE Block (HSE Block : SE Block을 활용한 합성곱 신경망 필터 수 자동 최적화)

  • Tae-Wook Kim;Hyeon-Jin Jung;Ellen J. Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.179-184
    • /
    • 2022
  • In this paper, we are going to study how we can automatically determine the number of convolutional filters for the optimal model without a search algorithm. This paper proposes HSE Block by connecting SE Block proposed in SENet to a convolutional neural network and connecting a convolutional neural network not learned at the bottom. An experiment was conducted to increase the number of filters by one per 3 epoch using two datasets for the HSEBlock model and to increase the number of filters by the value in the filter. Based on this experiment, the model was constructed with multi-layer HSE Block instead of layer HSE Block, and the experiment was carried out using a dataset that was more difficult to learn than the one used in the previous experiment. The effect of HSE Block was verified by conducting an experiment with the number of HSE Blocks set to 2, 3, 4, and 5 on a dataset that is more difficult to learn than before.

SKU-Net: Improved U-Net using Selective Kernel Convolution for Retinal Vessel Segmentation

  • Hwang, Dong-Hwan;Moon, Gwi-Seong;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.29-37
    • /
    • 2021
  • In this paper, we propose a deep learning-based retinal vessel segmentation model for handling multi-scale information of fundus images. we integrate the selective kernel convolution into U-Net-based convolutional neural network. The proposed model extracts and segment features information with various shapes and sizes of retinal blood vessels, which is important information for diagnosing eye-related diseases from fundus images. The proposed model consists of standard convolutions and selective kernel convolutions. While the standard convolutional layer extracts information through the same size kernel size, The selective kernel convolution extracts information from branches with various kernel sizes and combines them by adaptively adjusting them through split-attention. To evaluate the performance of the proposed model, we used the DRIVE and CHASE DB1 datasets and the proposed model showed F1 score of 82.91% and 81.71% on both datasets respectively, confirming that the proposed model is effective in segmenting retinal blood vessels.

Performance comparison of lung sound classification using various convolutional neural networks (다양한 합성곱 신경망 방식을 이용한 폐음 분류 방식의 성능 비교)

  • Kim, Gee Yeun;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.568-573
    • /
    • 2019
  • In the diagnosis of pulmonary diseases, auscultation technique is simpler than the other methods, and lung sounds can be used for predicting the types of pulmonary diseases as well as identifying patients with pulmonary diseases. Therefore, in this paper, we identify patients with pulmonary diseases and classify lung sounds according to their sound characteristics using various convolutional neural networks, and compare the classification performance of each neural network method. First, lung sounds over affected areas of the chest with pulmonary diseases are collected by using a single-channel lung sound recording device, and spectral features are extracted from the collected sounds in time domain and applied to each neural network. As classification methods, we use general, parallel, and residual convolutional neural network, and compare lung sound classification performance of each neural network through experiments.

On-Line Topic Segmentation Using Convolutional Neural Networks (합성곱 신경망을 이용한 On-Line 주제 분리)

  • Lee, Gyoung Ho;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.585-592
    • /
    • 2016
  • A topic segmentation module is to divide statements or conversations into certain topic units. Until now, topic segmentation has progressed in the direction of finding an optimized set of segments for a whole document, considering it all together. However, some applications need topic segmentation for a part of document which is not finished yet. In this paper, we propose a model to perform topic segmentation during the progress of the statement with a supervised learning model that uses a convolution neural network. In order to show the effectiveness of our model, we perform experiments of topic segmentation both on-line status and off-line status using C99 algorithm. We can see that our model achieves 17.8 and 11.95 of Pk score, respectively.

Semantic Classification of DSM Using Convolutional Neural Network Based Deep Learning (합성곱 신경망 기반의 딥러닝에 의한 수치표면모델의 객체분류)

  • Lee, Dae Geon;Cho, Eun Ji;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.435-444
    • /
    • 2019
  • Recently, DL (Deep Learning) has been rapidly applied in various fields. In particular, classification and object recognition from images are major tasks in computer vision. Most of the DL utilizing imagery is primarily based on the CNN (Convolutional Neural Network) and improving performance of the DL model is main issue. While most CNNs are involve with images for training data, this paper aims to classify and recognize objects using DSM (Digital Surface Model), and slope and aspect information derived from the DSM instead of images. The DSM data sets used in the experiment were established by DGPF (German Society for Photogrammetry, Remote Sensing and Geoinformatics) and provided by ISPRS (International Society for Photogrammetry and Remote Sensing). The CNN-based SegNet model, that is evaluated as having excellent efficiency and performance, was used to train the data sets. In addition, this paper proposed a scheme for training data generation efficiently from the limited number of data. The results demonstrated DSM and derived data could be feasible for semantic classification with desirable accuracy using DL.

A Gradient-Based Explanation Method for Graph Convolutional Neural Networks (그래프 합성곱 신경망에 대한 기울기(Gradient) 기반 설명 기법)

  • Kim, Chaehyeon;Lee, Ki Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.670-673
    • /
    • 2022
  • 설명가능한 인공지능은 딥러닝과 같은 복잡한 모델에서 어떠한 원리로 해당 결과를 도출해냈는지에 대한 설명을 함으로써 구축된 모델을 이해할 수 있도록 설명하는 기술이다. 최근 여러 분야에서 그래프 형태의 데이터들이 생성되고 있으며, 이들에 대한 분류를 위해 다양한 그래프 신경망들이 사용되고 있다. 본 논문에서는 대표적인 그래프 신경망인 그래프 합성곱 신경망(graph convolutional network, GCN)에 대한 설명 기법을 제안한다. 제안 기법은 주어진 그래프의 각 노드를 GCN을 사용하여 분류했을 때, 각 노드의 어떤 특징들이 분류에 가장 큰 영향을 미쳤는지를 수치로 알려준다. 제안 기법은 최종 분류 결과에 영향을 미친 요소들을 gradient를 통해 단계적으로 추적함으로써 각 노드의 어떤 특징들이 분류에 중요한 역할을 했는지 파악한다. 가상 데이터를 통한 실험을 통해 제안 방법은 분류에 가장 큰 영향을 주는 노드들의 특징들을 실제로 정확히 찾아냄을 확인하였다.

Design and Implementation of Mobile Continuous Blood Pressure Measurement System Based on 1-D Convolutional Neural Networks (1차원 합성곱 신경망에 기반한 모바일 연속 혈압 측정 시스템의 설계 및 구현)

  • Kim, Seong-Woo;Shin, Seung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1469-1476
    • /
    • 2022
  • Recently, many researches have been conducted to estimate blood pressure using ECG(Electrocardiogram) and PPG(Photoplentysmography) signals. In this paper, we designed and implemented a mobile system to monitor blood pressure in real time by using 1-D convolutional neural networks. The proposed model consists of deep 11 layers which can learn to extract various features of ECG and PPG signals. The simulation results show that the more the number of convolutional kernels the learned neural network has, the more detailed characteristics of ECG and PPG signals resulted in better performance with reduced mean square error compared to linear regression model. With receiving measurement signals from wearable ECG and PPG sensor devices attached to the body, the developed system receives measurement data transmitted through Bluetooth communication from the devices, estimates systolic and diastolic blood pressure values using a learned model and displays its graph in real time.

Lightweight Residual Layer Based Convolutional Neural Networks for Traffic Sign Recognition (교통 신호 인식을 위한 경량 잔류층 기반 컨볼루션 신경망)

  • Shokhrukh, Kodirov;Yoo, Jae Hung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.105-110
    • /
    • 2022
  • Traffic sign recognition plays an important role in solving traffic-related problems. Traffic sign recognition and classification systems are key components for traffic safety, traffic monitoring, autonomous driving services, and autonomous vehicles. A lightweight model, applicable to portable devices, is an essential aspect of the design agenda. We suggest a lightweight convolutional neural network model with residual blocks for traffic sign recognition systems. The proposed model shows very competitive results on publicly available benchmark data.

CNN-Based Novelty Detection with Effectively Incorporating Document-Level Information (효과적인 문서 수준의 정보를 이용한 합성곱 신경망 기반의 신규성 탐지)

  • Jo, Seongung;Oh, Heung-Seon;Im, Sanghun;Kim, Seonho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.10
    • /
    • pp.231-238
    • /
    • 2020
  • With a large number of documents appearing on the web, document-level novelty detection has become important since it can reduce the efforts of finding novel documents by discarding documents sharing redundant information already seen. A recent work proposed a convolutional neural network (CNN)-based novelty detection model with significant performance improvements. We observed that it has a restriction of using document-level information in determining novelty but assumed that the document-level information is more important. As a solution, this paper proposed two methods of effectively incorporating document-level information using a CNN-based novelty detection model. Our methods focus on constructing a feature vector of a target document to be classified by extracting relative information between the target document and source documents given as evidence. A series of experiments showed the superiority of our methods on a standard benchmark collection, TAP-DLND 1.0.

Optimizing CNN Structure to Improve Accuracy of Artwork Artist Classification

  • Ji-Seon Park;So-Yeon Kim;Yeo-Chan Yoon;Soo Kyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.9-15
    • /
    • 2023
  • Metaverse is a modern new technology that is advancing quickly. The goal of this study is to investigate this technique from the perspective of computer vision as well as general perspective. A thorough analysis of computer vision related Metaverse topics has been done in this study. Its history, method, architecture, benefits, and drawbacks are all covered. The Metaverse's future and the steps that must be taken to adapt to this technology are described. The concepts of Mixed Reality (MR), Augmented Reality (AR), Extended Reality (XR) and Virtual Reality (VR) are briefly discussed. The role of computer vision and its application, advantages and disadvantages and the future research areas are discussed.