• Title/Summary/Keyword: 합성고무시트

Search Result 7, Processing Time 0.022 seconds

An Experimental Study on the Physical Property of Non-Vulcanized Waterproofing Synthetic Rubber Sheet for the Underground Concrete Wall (지하 콘크리트 벽체용 미가황 합성고무시트 방수재의 물성에 관한 실험적 연구)

  • Choi, Eun Su;Lee, Dae Woo;Seo, Sang Kyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.69-78
    • /
    • 2012
  • This paper study on the physical property of naturally vulcanizing waterproofing synthetic rubber sheet for the underground concrete wall. In order to finding the naturally vulcanizing time, the relation of vulcanizing time and tensile strength is analysed from non-vulcanizing to naturally vulcanizing time. Physical tests such as tensile strength, tear strength: etc., under the thermal environment temperature at $-20^{\circ}C$, $-10^{\circ}C$, $20^{\circ}C$, $60^{\circ}C$. The result of experiment show that the developed rubber sheet has the delay time about 85 days and the curing time about 35 days. The tensile strength increased by about 692% and coefficient of expansion decreased by about 10% which value can be sufficiently compensate the demerit of vulcanized rubber sheet. Also, all of the physical properties of the naturally rubber sheet satisfy the KS standard and compare to the vulcanized rubber sheet, the developed naturally rubber sheet have excellent durability.

A Study on the Waterproofing for Wet Structure Use of Room Temperature Vulcanization(RTV) Synthetic Rubber Sheet (상온가황형 합성고무시트를 이용한 습윤구조물 방수에 관한 연구)

  • 박동협;김영근;신주재;이대우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.545-548
    • /
    • 2003
  • The purpose of this study is measures vulcanization properties of matter by time of room temperature vulcanization synthetic rubber sheet and the evaluation adhesive properties tested by concrete surface moisture. Also, Its estimated reaction mechanism and adhesion performance between protection mortar and waterproofing layer. The results showed that vulcanization progressed in room temperature and adhesion intensity increased regardless of moisture condition.

  • PDF

Waterproofing technology for PC double arch tunnel using synthetic rubber polymer gel and cooper sheet for root barrier (합성고무 폴리머 겔과 구리 방근시트를 이용한 P.C 쌍아치 터널 구조물 방수기술)

  • Lee, Jong-Yong;Park, Sang-Tai;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.44-45
    • /
    • 2020
  • The purpose of this study was to contemplate the effectual waterproofing materials and construction methods for the restoration of underground infrastructures using precast arches(PC-Arch). Until now, there were no proper waterproofing guidelines for waterproofing precast arch tunnel when restoring cultural heritage or building underground infrastructures for noise control. Asphalt membrane sheets were commonly used, but the efficacy of waterproofing done on the precast segment was vulnerable. This study aims to examine the Synthetic Rubber Polymerised Gel(SRPG) proposed in ISO TR 16475, a guideline for the repair of water-leakages, and to demonstrate field applicability based on the waterproofing solution used on the road improvement project in front of Changgyeonggung Palace in Yulgok-ro, Seoul, Republic of Korea.

  • PDF

Effect of Liquid Isoprene Rubber on the Adhesion Property of UV Curable Acrylic Pressure-Sensitive Adhesive (액상 이소프렌 고무가 자외선 경화형 아크릴 점착제의 점착 특성에 미치는 영향)

  • Lee, Jiye;Chung, Kyungho
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.210-219
    • /
    • 2014
  • In this study, the acrylic pressure sensitive adhesive (PSA) for the optical functionality sheet was prepared by blending liquid isoprene rubber. The acrylic PSA was synthesized with butyl acrylate, acrylic acid, 2-ethylhexyl acrylate and 2-hydroxyethyl methacrylate. Toluene was used to a solvent for polymerization. Liquid isoprene rubber (LIR-50) was blended with the acrylic PSA and blend ratio was 0 ~ 50 wt%. According to the results, the adhesive transfer, which was the big problem of acrylic adhesive, was reduced with the addition of LIR-50. The secondary bonding of LIR-50 with substrate did not occurred due to absence of polar group in LIR-50. The peel strength and adhesive transfer were decreased by UV curing and the degreed of decrease depended on the amounts of photoinitiator and UV irradiation time. On the other hand holding power increased drastically by increasing amounts of photoinitiator and UV irradiation time.

Analysis of the Cause of Waterleakage in Residential Apartment Underground Parking Ground and the Review of the Repare Methods (공동주택 지하주차장의 누수원인 분석 및 보수방안 검토)

  • Oh, Sang-Keun;Choi, Sung-Min;Song, Je-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.255-264
    • /
    • 2014
  • This study analyzes the cause and the repairing method of water leak by parts of basement parking lot which is recorded to have a high defect frequency in apartment buildings. It has been assessed that the cause of water leakage on the first floor upper substrate is due to such factors as landscaping and weights. During construction or through other cases, it has been determined that cracks were produced in the apartment structure because the structure was weak and exposed to the effects of the substrate movement. The base floor and underground external walls are areas that are exposed to water pressure (uplife pressure), thus in normal cases the rear surface repair of the structure using sythetic rubberized polymer gel should be considered as an effective method. However, in cases where application of waterproofing layer is required in the structure due to high water pressure, using asystolic cement milk grout to form the waterproofing layer and applying water-swelling acrylic material into the cracked areas is considered to be highly effective.

Joint Displacement Resistance Evaluation of Waterproofing Material in Railroad Bridge Deck (철도교량상판 방수재료 선정을 위한 균열거동저항 성능평가)

  • Bae, Young-Min;Oh, Dong-Cheon;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.683-692
    • /
    • 2020
  • A joint displacement resistance evaluation method for selecting waterproofing materials in railway bridge decks is proposed. The displacement range for an evaluation is determined by finite element method (FEM) analysis of a load case based on an existing high-speed PSC Girder Box railroad bridge structure. The FEM analysis results were used to calculate the minimum joint displacement range to be applied during testing (approximately 1.5 mm). For the evaluation, four commonly used waterproofing membrane types, cementitious slurry coating (CSC), polyurethane coating system (PCS), self-adhesive asphalt sheet (SAS), and composite asphalt sheet (CAS), were tested, with five specimens of each membrane type. The joint displacement width range conditions, including the minimum displacement range obtained from FEM analysis, were set to be the incrementing interval, from 1.5, 3.0, 4.5, and 6.0 mm. The proposal for the evaluation criteria and the specimen test results demonstrated how the evaluation method is important for the sustainability of high-speed railway bridges.