• Title/Summary/Keyword: 합금화용융아연코팅

Search Result 3, Processing Time 0.023 seconds

Effects of Galvannealing Temperatures on Iron-Zn Intermetallic Compounds and Friction Characteristic of Galvannealed Coatings (갈바어닐링온도변화가 합금화용융아연코팅의 합금상과 마찰특성에 미치는 영향)

  • Lee, Jung-Min;Kim, Dong-Hwan;Lee, Seon-Bong;Kim, Dong-Jin;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1107-1114
    • /
    • 2008
  • This paper is aimed to understand the effect of different galvannealing temperatures on the frictional properties and Fe-Zn intermetallic phases of the galvannealed (GA) coatings on steel sheets. Their galvannealing treatments were conducted at 465, 505, 515 and $540^{\circ}C$ for about 10s in the additional heating furnace of an industrial continuous hot-dip galvanizing line. The mechanical and the frictional properties of the coatings were estimated using nanoindentation, nanoscratch, micro vickers hardness tests and flat friction tests, which were performed at contact pressures of 4, 20 and 80MPa. Also, the correlation between the microstructure and the frictional properties of the GA coatings were investigated by SEM observation for the cross-section of the GA coating after and before flat friction tests. The results showed that the mechanical and the frictional properties of the coatings are strongly dependent on their phase distributions and microstructure. Especially, in low contact pressure of 4MPa the frictional properties of the coatings were dependent on the surface phases and morphology, while in high contact pressure of 80MPa it was influenced by their mechanical properties based on the dominant phase distributions.

Estimations of the Adhesion Strength of Galvannealed Coatings on Coated Sheet Using Single Lap-Shear Test (단일겹치기이음시험을 이용한 합금화용융아연코팅강판의 코팅층 접합강도 평가)

  • Lee, Jung-Min;Lee, Chan-Joo;Ko, Dae-Cheol;Lee, Seon-Bong;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.560-567
    • /
    • 2009
  • This paper was designed to estimate the adhesion strength of galvannealed coatings on steel sheets. The adhesion strength were evaluated using single lap - shear tests where the lap joint was bonded by structural adhesive. Tests were performed for overlap length of 5mm, 10mm and 15 mm and three directions (0, 45, 90) of steel sheets used as the adherend of the overlap joint. After the tests, FE simulations of the single lap-shear test were also carried out to observe the stress distribution in the interface between the adhesive and the coated sheet. The results showed that the joint failure loads obtained from the tensile tests of bonded single lap-joints were the same, regardless of overlap lengths and directions of steel sheets. Also, the failure of galvannealed coatings greatly depended on shear stress distribution in the interface and the value was about 30MPa.

Application of Single Lap-Shear Test for Extracting Adhesive Bonding Strength of Coating Layer on Galvannealed sheet (합금화용융아연코팅강판의 코팅층 접합강도 평가를 위한 단일 겹치기이음 시험의 적용)

  • Lee, Jung-Min;Lee, Cha-Joo;Lee, Sang-Gon;Ko, Dae-Cheol;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.238-243
    • /
    • 2007
  • This paper is designed to estimate the adhesion strength of coating layer on galvannealed steel sheet using lap shear test. The single lap shear test is the most commonly used standard test for determining the strength of medium-strength and high strength bonds. The bond strength of bonded single lap joints on subjecting the substrates to loads is determined by lap shear forces in the direction of the bonded joint. In this study, specimen for adhesion strength test was made to attach coated sheet to cold rolled sheet and were heated in temperature of 180 for 20minutes. After test, detached parts of coatings on coated sheet were observed using SEM and EDX to identify substrate and complete detachment. The tested results showed that adhesive strength of coating is unrelated to anisotropy of sheet and is difficult to be extracted using conventional theory because of fine cracks of coating layers which were created during annealing process.

  • PDF