• Title/Summary/Keyword: 함침재료

Search Result 163, Processing Time 0.022 seconds

Fabrication and Characterization of 3D Woven Textile Reinforced Thermoplastic Composites (3차원 직조형 열가소성수지 복합재료 제조 및 특성화)

  • 홍순곤;변준형;이상관
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.33-40
    • /
    • 2003
  • In order to overcome one of the most pronounced shortcomings of conventional laminated composites, such as the low damage tolerance due to delamination, the thermoplastic materials and 3D (three-dimensional) preforms have been utilized in the manufacture of composite materials. From the newly developed process termed as the co-braiding, hybrid yarns of the thermoplastic fibers (PEEK) and reinforcing fibers (carbon) have been fabricated. In order to further enhance the delamination suppression, through thickness fibers have been introduced by way of 3D weaving technique in the fabrication of textile preforms. The preforms have been thermoformed to make composite materials. Complete impregnation of the PEEK into the carbon fiber bundles has been confirmed. For the comparison of mechanical performance of 3D woven composites, quasi-isotropic laminates using APC-2/AS4 tapes have been fabricated. Tensile and compressive properties of both the composites have been determined. Furthermore. the open hole, impact and CAI(Compression After Impact) tests were also carried out to assess the applicability of 3D woven textile reinforced thermoplastic composites in aerospace structures.

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites using Electro- Micromechanical Technique and Acoustic Emission (전기적-미세역학 시험법과 음향 방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴 손상 감지능)

  • 김대식;박종만;김태욱
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.285-290
    • /
    • 2004
  • Nondestructive damage sensitivity of carbon nanotube(CNT) and nanofiber (CNF)/epoxy composites with their adding contents was investigated using electro-micromechanical technique. Carbon black (CB) was used only for the comparison with CNT and CNF. The fracture of carbon fiber was detected by acoustic emission (AE), which was correlated to the change in electrical resistance, ΔR under double-matrix composites (DMC) test. Stress sensing on carbon nanocomposites was performed by electro-pullout test under uniform cyclic loading. At the same volume fraction, the damage sensitivity for fiber fracture, matrix deformation and stress sensing were highest for CNT/epoxy composite, whereas for CB/epoxy composite they were the lowest among three carbon nanomaterials (CNMs). Damage sensitivity was correlated with morphological observation of carbon nanocomposites. Homogeneous dispersion among CNMs could be keying parameters for better damage monitoring. In this study, damage sensing of carbon nanocomposites could be evaluated well nondestructively by the electrical resistance measurement with AE.

Compressive Strength of Unidirectional Glass/Epoxy Specimens Processed by Wet Lay-up at Room Temperature (수작업/상온경화시킨 일방향 Glass/Epoxy 시편의 압축강도)

  • Lee, Jong-Won;Kim, Jin-Won
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The present study provides the compressive design allowable of a unidirectional glass/epoxy composite laminate processed by wet lay-up at room temperature. The compressive strength values measured from 39 specimens have been assumed to follow the two-parameter Weibull distribution. Following the statistical guidelines provided by MIL-HDBK-17F, the B-basis and A-basis values of the aforementioned laminate are found to be 82.6% and 65.9%, of the mean compressive strength, respectively. The B-basis value is then discounted further at 50% for the in-situ application on the main wing spar caps of an experimental canard aircraft.

  • PDF

Improved Electrical Conductivity of CFRP by Conductive Nano-Particles Coating for lightning Strike Protection (낙뢰손상방지를 위한 전도성 나노입자 코팅에 의한 탄소섬유 복합재료의 전기전도도 향상 연구)

  • Ha, Min-Seok;Kwon, Oh-Yang;Choi, Heung-Soap
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • The improvement of electrical conductivity of carbon-fiber reinforced plastics (CFRP) has been investigated by silver nano-particles coating for the purpose of lightning strike protection. Silver nano-particles in colloid were sprayed on the surface of carbon fibers, which were then impregnated by epoxy resin to form a CFRP specimen. Electrical resistance was measured by contact resistance meter which utilize the principles of the AC 4-terminal method. Electrical resistance value was then converted to electrical conductivity. The coated silver nano-particles on the carbon fibers were verified by SEM and EDS. The electrical conductivity was increased by three times of the ordinary CFRP.

Structural Design of Light Weight Natural Fiber Composites for Next Generation Automobile Bonnet (차세대 자동차 본넷용 친환경 경량화 자연섬유 복합재 구조 설계)

  • Park, Kilsu;Kong, Changduk;Park, Hyunbum
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.46-51
    • /
    • 2015
  • In this study, structural design and analysis of the automobile bonnet is performed. The flax/vinly ester composite material is applied for structural design. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite bonnet. The VARTML is a manufacturing process that the resin is injected into the fly layered-up fibers enclosed by a rigid mold tool under vacuum. A series of flax/vinyl ester composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of the automobile bonnet is performed.

Influence of Oxidation Inhibitor on Carbon-Carbon Composites : 7. Studies on Work of Adhesion and Fracture Toughness of Carbon-Carbon Composites (산화억제제를 첨가한 탄소/탄소 복합재료의 물성에 관한 연구 : 7. 탄소/탄소 복합재료외 부착력과 파괴인성)

  • 박수진;서민강;이재락
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.435-440
    • /
    • 2001
  • The objective of this study was to examine the effect of oxidation inhibitor contents on the work of adhesion, fracture toughness, and impact strength of the unidirectional carbon-carbon composites (C/C composites). The molybdenum disilicide ($MoSi_2$) used as an oxidation inhibitor was impregnated with phenolic resins to improve the anti-oxidation properties of the composites in different concentrations of 4, 12 and 20 wt%. Based on Wilhelmy equation, the work of adhesion of C/C composites was calculated by contact angle methods. Fracture toughness and impact strength were pressured by three-point bending test for the critical intensity factor ($K_IC$) and Izod test method, respectively. As a result, the composites made with $MoSi_2$ resulted in an increasing of both fracture toughness and impact strength. Especially, the composites made with 12 wt% $MoSi_2$ content showed the highest value of London dispersive component, $W_A\;^L$, in work of adhesion, resulting from improving the interfacial adhesion force among fibers, filler, and matrix in this system.

  • PDF

Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 9. Studies on Impact Properties of the Composites (산화억제제 첨가에 의한 탄소/탄소 복합재료의 물성에 관한 연구: 9. 복합재료의 충격특성에 관한 연구)

  • 박수진;서민강;이재락
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • In this work, the effect of molybdenum disilicide(MoSi$_2$) content on the impact properties of carbon-carbon composites(C/C composites) was investigated in the presence of MoSi$_2$. The content of MoSi$_2$ was varied in 0, 4, 12 and 20 wt% on the basis of resin matrix for anti-oxidation properties of the composites under high temperature. As a result, the composites made with MoSi$_2$ resulted in an increase of interfacial adhesion between fibers and matrix, which could improve the impact properties of the composites. Especially, 12 wt% Mosi$_2$ composites showed the highest impact properties in the present system. This was probably due to the existence of brittle-to-ductile transition(BDT) properties of MoSi$_2$ in the vicinity of 90$0^{\circ}C$, resulting from increasing the interfacial adhesion force among fibers, filler, and matrix in the composites.

Surface Treatment of Silica Nanoparticles and the Characteristics of their Composites with Thermoplastic Polyurethane Elastomer (실리카 나노입자의 표면처리와 이를 포함한 열가소성 폴리우레탄 복합소재의 특성)

  • Yoo, Sun Hwa;Song, Hyun Jae;Kim, Chang Keun
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.721-726
    • /
    • 2012
  • Thermoplastic polyurethane (TPU) elastomer is used as an encapsulant in undersea sonar devices. A new material for sonar encapsulant exhibiting better mechanical strength than TPU along with a lower swelling ratio for seawater and oil is required to prolong its application. TPU grafted silica nanoparticles (TPU-g-silica) were prepared and then they were melt mixed with TPU to fabricate desirable composites for underwater applications. The composite containing silica nanoparticles exhibited better tensile strength and lower swelling ratios in the seawater and oil than TPU regardless of the surface treatment of the silica particles. At fixed silica content in the composite, the TPU/TPU-g-silica composite exhibited better tensile strength and lower swelling ratio than the TPU composite with the pristine silica particles. Furthermore, the TPU/TPU-g-silica composite exhibited enhanced tensile strength as compared to TPU after being impregnated with oil.

Fabrication of PP/Carbon Fiber Composites by Introducing Reactive Interphase and its Properties (반응성 고분자 계면상을 도입한 PP/탄소섬유 복합재료의 제조와 물성)

  • 김민영;김지홍;김원호;최영선;황병선
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.556-563
    • /
    • 2000
  • In general, the development of thermoplastic composites has been confronted with difficult problems such as the weak bonding strength between fibers and matrix. However, now, such problems are being surmounted by the development of resins, the improvement of processes, and introduction of interphase. Especially, the introduction of interphase between fiber and matrix can help a dissipation of the impact energy and provide a good adhesion between fibers and matrix. In this study, polymeric interphase was introduced by electrodeposition, modified polypropylene was added to improve the weak bonding strength between interphase and polypropylene matrix. By evaluation of interlaminar shear strength and impact strength of the composites, it was found that composites with introduced composites showed higher mechanical properties than those of composites without interphase. Reactive polymers which have either anhydride or free acid functional group were used as interphase materials, and these polymers also behave as charge carrier in aqueous solution during the electrodeposition process. Weight gain on the carbon fibers was evaluated by changing process parameters such as concentration of solution, current density, and electrodeposition time.

  • PDF

Flame Retardant Properties of Basalt Fiber Reinforced Epoxy Composite with Inorganic Fillers (무기 필러가 첨가된 현무암섬유 강화 에폭시 복합재료의 난연 특성)

  • Mun, So Youn;Lee, Su Yeon;Lim, Hyung Mi
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.368-374
    • /
    • 2019
  • Basalt fiber reinforced epoxy composites with inorganic filler (BFRP-F) such as Mg(OH)2 (magnesium hydroxide), Al(OH)3 (aluminum hydroxide), Al2O3 (aluminum oxide) and AlOOH (boehmite) were prepared by hand lay-up and hot pressing. The combustive properties of BFRP-F were improved comparing with basalt fiber reinforced epoxy composite (BFRP) without inorganic filler. At a 30 wt% resin content, the limited oxygen index (LOI) of BFRP is 28.9, which is higher than that of epoxy (21.4), and the LOI of BFRP-F is higher than that of BFRP. The BFRP-F showed the lower peak heat release rate (PHRR), total heat release (THR) and total smoke release rate (TSR) than those of BFRP. We confirmed that the flame retardant properties of the composite were improved by the addition of inorganic filler through the dehydration reaction and oxide film formation.