수위-유량관계곡선식은 측정된 수위를 유량으로 변환하는 데 필요하며 유량측정 성과를 이용하여 개발된다. 수위-유량관계곡선식 개발에서 구간분리 위치는 수리적 특성과 하천단면 형상 등을 고려하여 결정되며 이 과정에서 개발자의 주관적인 판단이 개입되는 경우가 있다. 구간분리 위치는 수위-유량관계곡선식의 전체적인 형태를 결정할 정도로 중요하고 잘못된 구간분리는 수위-유량관계곡선식의 오류를 유발하게 되며 특히 외삽구간에서 큰 오류가 발생할 가능성이 높다. 또한 예산, 인력 등의 문제로 많지 않은 유량측정성과로 정확한 수위-유량관계곡선식을 개발하려면 하천의 단면형상 및 흐름 특성 등 수리적인 요소를 고려하여 구간을 분할해야 한다. 본 연구에서는 기존의 수위-평균유속, 수위-단면적, 수위-${\sqrt{Q}}$ 등 수리적 검토 방법을 살펴보고 이를 보완하여 구간분리 위치 결정에 있어서 주관성을 배제하고자 하였다. 구간분리 위치에 대한 적절성을 수위-유량관계곡선식 지수 (c)의 물리적인 의미를 고려하여 이를 검토하였다.
본 논문에서는 새로운 비지도 특징 선별 기법을 제안한다. 기존 비지도 방식의 특징 선별 기법들은 특징을 선별하기 위해 가상의 레이블 데이터를 정하고 주어진 데이터를 이 레이블 데이터에 사영하는 회귀 분석 방식으로 특징을 선별하였다. 하지만 가상의 레이블은 데이터로부터 생성되기 때문에 사영된 공간이 비슷하게 형성될 수 있다. 따라서 기존의 방법들에서는 제한된 공간에서만 특징이 선택될 수 있었다. 이를 해소하기 위해 본 논문에서는 직교 사영과 저랭크 근사를 이용하여 특징을 선별한다. 이 문제를 해소하기 위해 가상의 레이블을 직교 사영하고 이 공간에 데이터를 사영할 수 있도록 한다. 이를 통해 더 주요한 특징 선별을 기대할 수 있다. 그리고 사영을 위한 변환 행렬에 저랭크 제한을 두어 더 효과적으로 저차원 공간의 특징을 선별할 수 있도록 한다. 이 목표를 달성하기 위해 본 논문에서는 비용 함수를 설계하고 효율적인 최적화 방법을 제안한다. 여섯 개의 데이터에 대한 실험 결과는 제안된 방법이 대부분의 경우 기존의 비지도 특징 선별 기법보다 좋은 성능을 보여주었다.
제조에서의 모터 불량은 향후 A/S 및 신뢰성에 중요한 역활을 한다. 모터의 불량 구분은 소리, 전류, 진동등의 측정을 통해 검출한다. 본 논문에서 사용한 데이터는 자동차 사이드미러 모터 기어박스의 소리를 사용하였다. 모터 소리는 3가지의 클래스로 구성되어 있다. 소리 데이터는 멜스펙트로그램을 통한 변환 과정을 거쳐 네트워크 모델에 입력된다. 본 논문에서는 불량 모터 구분 성능을 올리기 위한 데이터 증강, 클래스 불균형에 따는 다양한 데이터 재샘플링, 재가중치 조절, 손실함수의 변경, 표현 학습과 클래스 구분의 두 단계 분리 방법 등 다양한 방법을 적용하였으며, 추가적으로 커리큘럼 러닝 방법, 자기 스페이스 학습 방법 등을 Bidirectional LSTM Attention, Convolutional Recurrent Neural Network, Multi-Head Attention, Bidirectional Temporal Convolution Network, Convolution Neural Network 등 총 5가지 네트워크 모델을 통하여 비교하고, 모터 소리 구분에 최적의 구성을 찾을 수 있었다.
컴퓨터 프로그램의 표절 또는 복제에 대한 유사도 검출은 구현에 사용된 프로그래밍 언어, 분석 대상 코드의 종류에 따라 각기 다른 감정 방법과 도구가 필요하다. 최근 들어 증가하고 있는 내장형 시스템의 목적 코드에 대한 유사도 감정은 원시 코드와 비교해 더욱 복잡한 과정 및 고도의 기술과 함께 상당한 자원을 요구하고 있다. 본 연구에서는 목적 코드를 대상으로 역 어셈블리 기법의 적용과 같은 역공학 방법을 이용하여, 목적 코드의 어셈블리어 변환을 통한 어셈블리어 레벨에서의 함수 단위 유사도 감정 방법에 관하여 연구하였다. 그리고, 어셈블리어 레벨에서의 유사도 비교를 위해 코드의 구문분석을 통한 명령어 및 오퍼랜드 테이블을 생성하고, 이를 대상으로 유사도를 검출할 수 있는 도구의 설계에 관하여 기술하였다.
기후변화가 가속화로 인해 수재해의 빈도와 강도 예측이 어려워짐에 따라 실시간 홍수 모니터링에 대한 수요가 증가하고 있다. 합성개구레이다는 광원과 날씨에 무관하게 촬영이 가능하여 수재해 발생시에도 영상을 확보할 수 있다. 합성개구레이다를 활용한 수체 탐지 알고리즘 개발이 활발히 연구되어 왔고, 딥러닝의 발달로 CNN을 활용하여 높은 정확도로 수체 탐지가 기능해졌다. 하지만, CNN 기반 수체 탐지 모델은 훈련시 높은 정량적 정확성 지표를 달성하여도 추론 후 정성적 평가시 경계와 소하천에 대한 탐지 정확성이 떨어진다. 홍수 모니터링에서 특히 중요한 정보인 경계와 좁은 하천에 대해서 정확성이 떨어짐에 따라 실생활 적용이 어렵다. 이에 경계를 강화한 적대적 학습 기반의 수체 탐지 모델을 개발하여 더 세밀하고 정확하게 탐지하고자 한다. 적대적 학습은 생성적 적대 신경망(GAN)의 두 개의 모델인 생성자와 판별자가 서로 관여하며 더 높은 정확도를 달성할 수 있도록 학습이다. 이러한 적대적 학습 개념을 수체 탐지 모델에 처음으로 도입하여, 생성자는 실제 라벨 데이터와 유사하게 수체 경계와 소하천까지 탐지하고자 학습한다. 반면 판별자는 경계 거리 변환 맵과 합성개구레이다 영상을 기반으로 라벨데이터와 수체 탐지 결과를 구분한다. 경계가 강화될 수 있도록, 면적과 경계를 모두 고려할 수 있는 손실함수 조합을 구성하였다. 제안 모델이 경계와 소하천을 정확히 탐지하는지 판단하기 위해, 정량적 지표로 F1-score를 사용하였으며, 육안 판독을 통해 정성적 평가도 진행하였다. 기존 U-Net 모델이 탐지하지 못하던 영역에 대해 제안한 경계 강화 적대적 수체 탐지 모델이 수체의 세밀한 부분까지 탐지할 수 있음을 증명하였다.
디지털 영상, 특히, 전산화 단층촬영 영상은 X선 신호를 디지털 영상 신호로 변환하는 과정에서 노이즈가 필수적으로 포함되기 때문에 노이즈 저감화에 대한 고려가 필수적이다. 최근, 딥러닝 모델 기반의 노이즈 감소가 가능한 연구가 수행되고 있다. 그러므로, 본 연구의 목적은 폐 CT 영상에서의 다양한 종류의 노이즈를 U-net 딥러닝 모델을 이용하여 노이즈 감소 효과를 평가하였다. 총 800장의 폐 CT 영상을 사용하였고, Adam 최적화 함수와 100회의 반복 학습 횟수, 0.0001의 학습률을 적용한 U-net 모델을 이용하였다. 노이즈를 포함한 입력 영상 생성을 위하여 Gaussian 노이즈, Poisson 노이즈, salt & pepper 노이즈, speckle 노이즈를 적용하였다. 정량적 분석 인자로 평균 제곱 오차, 최대 신호 대 잡음비, 영상의 변동계수를 사용하여 분석하였다. 결과적으로, U-net 네트워크는 다양한 노이즈 조건에서 우수한 성능을 나타냈으며 그 효용성을 입증하였다.
원전 구조물은 냉각수를 사용하기 위해 해안가에 위치하고 있으며, 염해에 의한 철근부식에 노출되어 있다. UAE에 지어지는 원전 구조물의 경우, 해안가의 온도가 높으므로 염화물 이동이 다른 지역에 비하여 빠르게 평가된다. 본 연구에서는 원전 구조물에 사용되어지는 재료와 배합을 이용하여 5,000 psi (35 MPa)설계강도 등급의 시편을 제작하였으며, 온도와 재령을 고려하여 염화물 확산계수를 평가하였다. 재령 28일 및 91일에 강도 평가 및 온도에 따른 확산계수를 평가하여 특성을 분석하였다. 또한 91일 재령 콘크리트에 대하여 20℃~50℃의 범위에서 염화물 확산실험을 수행하였다. 또한 온도에 따른 기울기를 로그함수로 변환하여 활성화에너지를 도출하였으며, 기존의 제안값들과 비교하였다. 제안된 활성화에너지는 온도의존형 염화물 확산계수에 사용하여 합리적인 내구성 설계를 수행할 것으로 평가된다.
고학년으로 갈수록 지필 환경에만 머무르는 현실 속에서 생활 및 예술 작품 등에서 수학적 원리와 개념을 발견하도록 하는 테셀레이션 수업은 학생들의 흥미와 호기심을 유발하고 수학의 아름다움을 느끼게 하는 것 이상으로 기하학적 사고의 기초를 학습하는데 도움을 줄 수 있다. 이에 본 연구는 4학년까지 적용되고 있는 7차 교육과정을 중심으로 새롭게 등장하고 있는 테셀레이션에 대한 이해 및 교수 학습 자료가 체계적으로 정비되어 있지 못한 현실적인 문제의 해결 방안으로서 테셀레이션을 활용한 수학 학습의 내용을 분석하여 교사들에게는 테셀레이션의 이해 및 교수 학습 자료로서 , 학생들에게는 수학의 기하적 개념들을 쉽고 재미있게 학습할 수 있는 학습도구로서 활용할 수 있도록 하는 것을 목적으로 테셀레이션을 구현할 수 있는 컴퓨터 소프트웨어를 활용하여 테셀레이션 교수 학습 자료를 개발하였고 이를 위해 다음과 같은 연구 내용을 설정하였다. 가. 테셀레이션의 정의와 예 그리고 종류를 알아보고 테셀레이션 속의 수학적 개념을 활용방법과 함께 제시한다. 나. 제7차 초등 수학 교육과정 중 도형 영역과 규칙성과 함수 영역을 중심으로 테셀레이션을 적용할 수 있는 내용영역을 분석하고 컴퓨터 소프트웨어를 활용한 테셀레이션 자료를 제시한다. 다. 제작된 테셀레이션 교수 학습 자료의 효과적 활용을 위한 활용 방안을 탐색한다. 라. 제작된 테셀레이션 교수 학습 자료의 활용 효과를 알아보기 위해 적용 실험을 하고 이에 대한 학생들의 반응을 분석하여 학습의 효과를 밝힌다. 제작된 테셀레이션 교수 학습 자료의 적용 실험을 위하여 광주대성초등학교 6학년 한 반을 선정하였고 약 4주에 걸쳐 컴퓨터 소프트웨어를 활용한 테셀레이션 교수 학습 자료를 투입하여 4번의 활동수업을 실시하였다. 수업 후 작성된 학습지와 소감문 및 연구자에 의해 관찰된 수업내용을 바탕으로 다음과 같은 연구 결과를 얻을 수 있었다. 첫째, 제7차 초등 수학 교육과정 중 도형 영역과 규칙성과 함수 영역을 중심으로 컴퓨터 소프트웨어를 활용한 테셀레이션 자료를 제시한 결과 지필적 환경에서 제한적이었던 탐구하고 조작해보는 활동을 할 수 있는 역동적인 수학 실험실 환경이 제공됨으로써 도구적 이해가 아닌 관계적 이해를 하는 것을 확인할 수 있었다. 수학적 개념을 암기하는 것에서 벗어나 자연스런 조작을 통해 학생들이 개념을 이해하고 탐구하는 과정 속에서 학생들은 수학을 공부한다기 보다는 수학 속에서 재미있게 놀이한다는 생각을 가지고 수업에 참여하였고 배우는 즐거움을 알고 자신감을 가지며 더 나아가 창의적인 생각을 하도록 하는 기회를 줄 수 있었다. 둘째, 테셀레이션은 우리 생활 속에서 쉽게 발견할 수 있는 것으로 수학이 단순히 책에서만 한정되지 않고 다양한 분야 즉 디자인, 생활 속에서의 벽지문양과 포장지, 예술작품 등에 활용되고 있음을 체험함으로써 수학이 실생활에 광범위하게 활용되고 있음을 알게 하였다. 역으로 생활 속에서의 테셀레이션을 통해 수학적 개념을 찾는 과정을 통해 수학이 아름다우면서도 실용적이라는 생각을 심어줄 수 있었다. 셋째, 테셀매니아, GSP, 캐브리, 거북기하 등 평소 수업에서는 활용도가 적은 컴퓨터 소프트웨어를 활용함으로써 컴퓨터 소프트웨어 자체에서 오는 호기심뿐만이 아니라 직접 조작하여 테셀레이션 작품과 개념을 익히고 새로운 작품과 학습을 해 내는 과정을 통해 자신감과 성취감 등에 있어 큰 변화가 있음을 발견할 수 있었다. 컴퓨터 기능이 미숙한 학생의 경우 처음에는 당황해 하고 어려워하는 부분도 있었으나 조작할 시간적 여유를 주고 교사와 우수한 학생들이 도우미로서 역할을 잘해내어 나중에는 큰 어려움 없이 마칠 수 있었다. 테셀레이션이라는 용어가 아직은 생소한 현장에서 교수 학습 자료가 부족하고 그에 따른 이해도 부족한 현실 속에서 컴퓨터 소프트웨어를 활용한 테셀레이션 교수 학습 자료가 교수 학습 현장에 투입되어 유용하게 사용될 수 있는지 그 가능성을 조사한 것을 목적으로 한 본 연구의 결과로서 테셀레이션이라는 주제는 도형 영역과 규칙성과 함수 영역에서 평면 도형의 각과 모양 등의 성질을 탐구하게 하고, 대칭변환의 개념을 효율적으로 학습하게 할 수 있고, 반복되는 모양에서 규칙성을 발견하고 부분과 전체를 파악하여 패턴을 인지할 수 있게 하며 제작하고 분석하는 과정을 통해 여러 가지 수학적 개념과 수학적 창의성, 수학적인 아름다움을 느끼게 할 수 있음을 발견할 수 있었다. 또한 테셀레이션은 수학적 개념은 물론 수학과 미술, 수학과 일상 생활과의 연결성을 논의하고 확인하는 데 흥미로운 주제가 될 수 있다. 초등학교 교육과정에서 새롭게 도입되고 있는 테셀레이션을 활용하여 지도하기 위한 교수 학습 자료로 유용하게 사용될 수 있고 앞으로는 테셀레이션과 관련된 내용이 직접적으로 교육과정 내에서 다루어지고, 또한 테셀레이션을 적용한 수업이 학생들의 기하학적 사고 및 수학적 태도에 미치는 영향과 관련한 연구가 뒤따라야 할 것으로 본다.
급속적으로 비중이 증가하고 있는 태양광 에너지는 지속적인 개발 및 투자가 이루어지고 있다. 신재생에너지 정책인 그린뉴딜과 가정용 태양광 패널의 설치가 증가함에 따라 국내 태양광 에너지 보급이 점차 확대되어 그에 맞추어 발전량의 정확한 수요 예측 연구가 활발하게 진행되고 있는 시점이다. 또한, 일사량 예측이 발전량 수요 예측에 가장 영향을 미치는 요소로 작용하고 있다는 점에서 일사량 예측의 중요성을 파악하였다. 덧붙여, 본 연구는 선행 연구들에서 사용되지 않은 중기예보 기상 데이터를 활용하여 일사량 예측을 하고자 하였다는 점에서 가장 큰 차이점을 확인할 수 있다. 본 논문에서는 서울, 인천, 수원, 춘천, 대구, 대전의 총 여섯 지역의 태양광 일사량 예측을 위하여 다중선형회귀모형, KNN, Random Forest 그리고 SVR 모형과 클러스터링 기법인 K-means 기법을 결합한 후, 클러스터별 확률밀도함수를 계산하여 시간별 일사량 예측을 진행하고자 하였다. 중기예보 데이터를 사용하기 전, 모형 예측 결과를 비교하기 위한 지표로서 MAE (mean absolute error)와 RMSE (root mean squared error)를 사용하였다. 데이터는 2017년 3월 1일부터 2022년 2월 28일까지의 시간별 원 관측 데이터를 중기예보 데이터 양식에 맞추어 일별 데이터로 변환하였다. 모형의 예측 성능 비교 결과, Random Forest로 일별 일사량을 예측한 후, K-means 클러스터링으로 기후요인이 유사한 날짜들을 분류한 뒤 클러스터별 일사량의 확률밀도함수를 계산하여 시간별 일사량 예측값을 나타낸 방법이 가장 우수한 성능을 보였다. 또한 이 방법론을 이용하여 중기예보 데이터에 모형 적합 후, 예측 결과를 확인하였을 때, 일자별로 예측 오류가 상승하는 것을 확인할 수 있었다. 이는 중기예보 기상데이터의 예측 오류로 인한 것으로 보인다. 향후 연구에서는 중기예보 데이터에서 활용할 수 있는 기상요인 중, 강수 여부와 같은 외생 변수를 추가하거나 시계열 클러스터링 기법을 적용한 연구가 이루어져야할 것으로 보인다.
본 연구는 Athabasca 오일샌드광구의 역청 생산방법인, SAGD 수행에 영향을 주는 불균질한 유효투수도의 분포도를 만드는 저류층 모델링 작업 공정을 개발하기 위한 것이다. 암석학적 상 분포는 연구 지역 역청 저류층 내의 불균질성의 주요 원인이다. 대상 매질은 사암과 이암으로 구성된 하천에서 바다로 이어지는 채널로서 이암이 유체의 흐름을 방해해 유효 투수도를 감소시키고 있다. 본 연구에서는 암석학적 상등을 이암의 모양에 따라 마른 특성의 유효투수도를 갖는 세 종류로 분류하였다. 본 연구의 저류층 모델링 작업과정은 상 모델과 투수도 모델링, 두 가지 주요 모듈로 구성되어 있다. 상 모델링은 확률적인 접근을 이용하여 유효투수도 결정에 중요한, 세가지 상등 중에 어떤 종류에 속하는지를 알려준다. 투수도 모델링은 먼저 이암의 체적율을 구하고 그것을 유효투수도로 변환시킨다. 암석상들의 소형 모델에 대한 일련의 시뮬레이션 적용을 통해 이암 체적율을 유효투수도로 변환시키는 변환함수를 얻는다. 탄성파 자료는 지구통계학적 방법으로 상 모델링에 입력되는 상등의 우선 확률을 제공함으로써 상 모델링에 기여한다. 특히, 본 연구에서는 상들의 우선 확률을 개선하기 위해 상등의 예측 시 다양한 탄성파 속성들을 복합적으로 사용하는 신경망 방법을 이용하였다. 상 구분에 있어서의 얼마만큼 개선되었는지를 보여주기 위해 상 모델링 시 개선된 우선 확률을 사용한 결과를 단일 탄성파 속성을 이용하는 기존 방법의 결과와 비교하였다. 다중 탄성파 속성들의 복합적인 사용에서 밀도와 P파 속도를 조합해서 이용하는 것이 상구분을 향상시키는데 필수적이다. 또한 본 연구에서는 검층으로부터 얻은 공극률과 P파 속도, 사진찍은 것 같이 예측된 이암의 부피를 이용하여 sand matrix의 공극률이 정확하게 평가원 연구지역에서, 다른 상등 사이에서 P파 속도가 달라지게 하는 sand matrix의 공극률에 대해서도 논의하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.