• Title/Summary/Keyword: 함수특성곡선

Search Result 428, Processing Time 0.034 seconds

Determination of Soil Water Characteristic Curve and Permeability Equation of Unsaturated Soils Using Modified Triaxial Apparatus (변형된 삼축시험장치를 이용한 불포화토의 함수특성곡선과 투수계수방정식의 결정)

  • Kim Suk-Nam;Park Chi-Won;Mok Young-Jin;Kim Suk-Myung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.59-64
    • /
    • 2005
  • In studying unsaturated soil mechanics, determination of soil water characteristic curve and permeability equation though not easy, is an essential factor. In this research a new testing apparatus was developed to determine soil water characteristic curve and permeability equation. A test to get saturated permeability coefficients and soil water characteristic curves for two soils was performed by using the developed testing apparatus. First, a saturated permeability test was performed and then the test to get soil water characteristic curve of a drying process was performed. Next, the test to get soil water characteristic curve of a wetting process was performed. Test results showed hysteresis phenomena between soil water characteristic curve of a drying process and soil water characteristic curve of a wetting process. The permeability equations were determined by a theoretical method where a saturated permeability coefficient and a soil water characteristic curve were used.

Soil Water Characteristic Curve of the Weathered Granite Soil through Simulated Rainfall System and SWCC Cell Test (강우재현 모형실험과 SWCC Cell 실험에 의한 화강암질 풍화토의 함수특성곡선)

  • Ki, Wan-Seo;Kim, Sun-Hak
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.523-535
    • /
    • 2008
  • A simulated rainfall system was built, and the unsaturated characteristics were examined by execution of simulated rainfall system test and soil water characteristic curve cell test(SWCC Cell Test) under the various rainfall and slope conditions. With the results, the applicability of infiltration behavior under rainfall and soil water characteristic curve models to the unsaturated weathered granite soil was examined. At the results of comparison the volumetric water content and matric suction measured in the wetting process(under rainfall) with those in the drying process(leaving as it was) of the simulated rainfall system, the volumetric water content showed a difference of $2{\sim}5%$ and matric suction of about $3{\sim}10\;kPa$, indicating the occurrence of hysteresis. In addition, the difference was relatively larger in matric suction than in the volumetric water content, and this tells that the hysteresis behavior is larger in matric suction. When the soil water characteristic curve derived from measurements in simulated rainfall system test were compared with those from the soil water characteristic curve cell test, both methods produced soil water characteristic curves close each other in the wetting process and the drying process, but in both, there was a difference between results obtained from in the wetting process and those from in the drying process. Thus, when soil water characteristic curves are rationally applied to the design and stability analysis considering of the properties of unsaturated soil, it is considered desirable to apply the soil water characteristic curve of the wetting process to the wetting process, and that of the drying process to the drying process.

A Study on Measuring Soil-Water Characteristic Curve Using a Suction Control Technique (흡입력 조절 기법을 이용한 함수특성곡선 측정에 관한 연구)

  • Lee, Joonyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5587-5594
    • /
    • 2012
  • Determination of the soil-water characteristic curve is one of the most important things to solve geotechnical engineering problems. Expecially, convenient and reliable method to measure the soil-water characteristic curve during drying and wetting cycles is required with lower labor input, more independence from operator experience, and shorter testing time than other available methods. Many measurement methods including the flow pump system have been developed to characterize the soil-water characteristic curve for the several decades. This study measured the soil-water characteristic curve during drying and wetting cycles using a suction control technique with the flow pump system. Two test materials were used for determination of the soil-water characteristic curve, and it is concluded that suction control technique is suitable for determination of the soil-water characteristic curve and characterization of the hydraulic hysteresis with varying test conditions. Especially, the suction control technique can reduce error of measurement and save time in measuring the soil-water characteristic curve due to automated system and high degree of precision.

Soil-water characteristics of Unsaturated Decomposed Granite Soils (불포화 화강풍화토의 함수특성)

  • Shin, Bang-Woong;Lee, Bong-Jik;Lee, Jong-Kyu;Kang, Jong-Beom
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.49-58
    • /
    • 2003
  • The suction of unsaturated soil is one of the important variables to influence on volume change behavior. This research was performed to analyze the soil-water characteristic of decomposed granite soils in Chung Cheong area, and showed relationship with grain-size distribution. Empirical parameters a, n, m are main variables that can be used in the empirical equations in order to predict unsaturated soil. Decomposed granite soils is taken at 12 field, and redistributed due to a, n, m parameters. The result of Extractor test is showed that matric suction is effected by the grain-size distribution curve's left-right location, degree of an angle and fine contents of a soil.

  • PDF

Estimation of Unsaturated Permeability Function from Water Retention Characteristics for Korean Weathered Soils (함수특성에 근거한 국내 풍화토의 불포화 투수곡선 추정)

  • Kim, Yun-Ki;Choi, Kyung-Lim;Lee, Sung-Jin;Lee, Seung-Rae;Kwon, Hyoung-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.49-60
    • /
    • 2010
  • Unsaturated permeability function is an important factor in the design and analysis of various unsaturated soil structures. Generally the permeability characteristics decrease as the mat ric suction increases and the trend is similar to water retention characteristics of a soil. The permeability of unsaturated soils can be obtained directly by laboratory tests or indirectly by estimation methods from other soil properties. For unsaturated soils sampled from 7 areas in KOREA, SWCCs and unsaturated permeability functions were obtained by experimental tests. The unsaturated permeability results were also compared with the unsaturated permeability functions derived from the SWCCs theoretically. However, the current estimation models of unsaturated permeability function did not express the unsaturated permeability characteristics. Therefore, the FXK-M permeability function was modified to predict more accurate permeability functions for Korean weathered soils using a correction factor that can be calculated from the air-entry value of SWCC. The new estimation model resulted in good agreements for all tested soils.

Effect on Matric Suction in Soils due to Hysteretic Soil Water Characteristic Curves (함수특성곡선 이력현상이 지반 내 모관흡수력에 미치는 영향)

  • Kim, Jae-Hong;Hwang, Woong-Ki;Song, Young-Suk;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.91-100
    • /
    • 2012
  • Soil-water characteristic curves (SWCCs), which represent a physical property in partially saturated soils, show the relation between volumetric water content and matric suction. The SWCCs exhibit hysteresis during wetting and drying, however experimental expressions used to describe SWCCs have generally ignored the hysteresis. In addition, the shape of SWCC may depend on the void ratio which is changed by soil skeleton deformations or hysteretic behavior under various loading conditions. Hence, it is necessary to understand, both empirically and analytically, the relationship between soil skeleton deformations and the SWCCs of various soils. The typical SWCCs experimentally have drying, wetting, and the second drying curve. The measurement of a complete set of hysteretic curves is severely time-consuming and difficult works, then the first drying curve of SWCC is generally determined to estimate the hydraulic conductivity and shear strength function of partially saturated soils. This paper presents the hydraulic-mechanical behavior of partially saturated soils (weathered soil and silty soil) for volume changes and hysteresis in SWCCs regarding the difference between the first drying and wetting curve.

Soil Water Characteristic Curve for Weathered Granite Soils - A Test Method (화강풍화토에 대한 함수특성곡선 - 실험방법에 대한 연구)

  • Lee Sung Jin;Lee Seung Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.17-26
    • /
    • 2005
  • Soil water characteristic curve (SWCC) is a unique characteristic that should be considered In the analysis of unsaturated soil and prediction of unsaturated properties. However, the volume change of soil specimens that happens in the existing apparatus affects the SWCC, Therefore, In this study, we intended to obtain more appropriate SWCC by measuring the change In the volume of the specimen in the SWCC tests. The measured change of void ratio indicates that the saturation step prior to the test changes the original structure of the soil specimen. Thus we carried out the test far the same specimen omitting the saturation step prior to the test. The change of void ratio by this test procedure is relatively small.

The Influence of Overburden Pressure and Volume Change on the Soil-water Characteristic Curve of Unsaturated Weathered Granite Soil (상재하중과 체적변형을 고려한 불포화화강풍화토의 함수특성곡선)

  • Lee, Younghuy;Kim, Taehan;Moon, Seokjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.53-60
    • /
    • 2010
  • The comprehensive tests on unsaturated weathered granite soils are carried out to obtain the soil-water characteristic curve that is the one of the essential requisites to study the unsaturated soil. The weathered granite soils were obtained at Palgong mountain in Daegu. The existing test results have been carried out without overburden pressures and volume changes. In this study, the volumetric pressure plate extractor is improved to consider two factors such as overburden pressure and volume change. The applied overburden pressures were 0, 25, 50, 75, 100kPa and volume changes were measured at each phase. he results of this study are summarized as follows: As the overburden pressure increases, the volumetric water content decreases at the same matric suction and the air entry value increases and gradient of curve at the transition zone and the size of the hysteresis loops decreases. As the overburden pressure increases, the degree of saturation increases at the same matric suction and degree of saturation of the wetting curve is higher than that of dry curve. The SWCC with volume changes are slightly larger than those without volume changes. The general equation proposed by Fredlund & Xing(1994) to fit the experimental result of the SWCC indicates good agreement. The empirical parameters a, n, m as overburden pressure show similar inclination as the existing results.

A Study on the Acquisition Technique of Water Retention Characteristics Based on the Evaporation Method and the Chilled Mirror Method for Unsaturated Soils (증발법과 냉각거울법에 의한 불포화토의 함수특성 획득기법 연구)

  • Oh, Seboong;Yoo, Younggeun;Park, Gyusoon;Kim, Seongjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • In order to acquire hydraulic characteristics for unsaturated layers, water retention tests were performed and compared by using the evaporation method, volumetric pressure plate extractor (VPPE) and chilled-mirror dew point method. The evaporation and chilled-mirror method are currently developed experimental technology and measure the water retention curve of unsaturated soils quickly and accurately. In the evaporation and VPPE method, the water retention has been measured and compared until 100kPa matric suction and consequently the result of the evaporation method could be verified. In the chilled-mirror method, the water retention has been measured until high level of matric suction and the overall shape of water retention curves could be obtained. As a result of water retention tests, the representative water retention curves were obtained and the applicability of each test method was discussed. Using both the evaporation and chilled-mirror methods, the soil water retention curve can be acquired reasonably for the whole range of matric suction.

Influence of Rainfall Intensity and Saturated Permeability on Slope Stability during Rainfall Infiltration (강우침투시 강우강도와 포화투수계수가 안전율에 미치는 영향)

  • Lee, Seung-Rae;Oh, Tae-Kyu;Kim, Yun-Ki;Kim, Hee-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.65-76
    • /
    • 2009
  • The unsaturated characteristics of Korean weathered granite soils have been studied to investigate the influence of saturated permeability, rainfall intensity and soil-water characteristic curve (SWCC) on the slope stability. The upper, average and lower SWCCs were estimated from the publication and experimental results using the statistical concept. The roughly estimated SWCC can be used for the soils without experimental results by relating SWCC with the particle size distribution curve. An appropriate ratio between the saturated permeability and the rainfall intensity ($k_s$/i) was also suggested for practical use in designing the slopes by investigating the time-dependent variation of slope instability during the rainfall. The slope stability was deteriorated from the initiation of rainfall and recovered again after the factor of safety reached the critical value. The FS of the slope decreased at first and then increased after reaching the critical value during the rainfall. As a result, the slope instability was not related with an absolute rainfall intensity but with the ratio between the saturated permeability and the rainfall intensity. In case of the upper SWCC, the critical condition occurred when the ratio between the saturated permeability and the rainfall intensity was in the range of $1.0{\sim}2.0$.