이 논문에서는 능동형태 모델을 개선하여 입술의 형태를 효과적으로 추출하는 방법을 제안하였다. 입술의 형태변형은 능동형태 모델에 기반을 둔 통계적 형태 변형 모델을 사용하여 표현하였다. 능동형태 모델에서 각 점은 지엽적인 정보인 프로파일을 기반으로 독립적으로 이동하기 때문에 많은 오류가 발생할 수 있다. 전역적인 정보를 사용하기 위하여 이 논문에서는 능동윤곽선 모델에서 사용하는 것과 유사한 에너지 함수를 정의하고 전체 에너지가 최소화되는 위치로 점들이 이동하게 하였다. Tulip 1 데이터 베이스에 있는 입술 영상을 대상으로 실험한 결과, 제안한 방법이 기존 방법보다 실제 형태에 가깝게 입술을 추출하였다.
본 논문은 얼굴인식 분야에 있어서 필수 과정인 얼굴 및 얼굴의 주요소인 눈과 입의 추출에 관한 방법을 제시한다. 얼굴 영역 추출은 복잡한 배경하에서 움직임 정보나 색상정보를 사용하지 않고 통계적인 모델에 기반한 일종의 형찬정합 방법을 사용하였다. 통계적인 모델은 입력된 얼굴 영상들의 Hotelling변환 과정에서 생성되는 고유 얼굴로, 복잡한 얼굴 영상을 몇 개의 주성분 갑으로 나타낼 수 있게 한다. 얼굴의 크기, 영상의 명암, 얼굴의 위치에 무관하게 얼굴을 추출하기 위해서, 단계적인 크기를 가지는 탐색 윈도우를 이용하여 영상을 검색하고 영상 강화 기법을 적용한 후, 영상을 고유얼굴 공간으로 투영하고 복원하는 과정을 통해 얼굴을 추출한다. 얼굴 요소의 추출은 각 요소별 특성을 고려한 엣지 추출과 이진화에 따른 프로젝션 히스토그램 분석에 의하여 눈과 입의 경계영역을 추출한다. 얼굴 영상에 관련된 윤곽선 추출에 관한 기존의 연구에서 주로 기하학적인 모양을 갖는 눈과 입의 경우에는 주로 가변 템플릿(Deformable Template)방법을 사용하여 특징을 추출하고, 비교적 다양한 모양을 갖는 눈썹, 얼굴 윤곽선 추출에는 스네이크(Snakes: Active Contour Model)를 이용하는 연구들이 이루어지고 있는데, 본 논문에서는 이러한 기존의 연구와는 달리 스네이크를 이용하여 적절한 파라미터의 선택과 에너지함수를 정의하여 눈과 입의 윤곽선 추출을 실험하였다. 복잡한 배경하에서 얼굴 영역의 추출, 추출된 얼굴 영역에서 눈과 입의 영역 추출 및 윤곽선 추출이 비교적 좋은 결과를 보이고 있다.
남해 중앙부해역의 해양환경특성을 파악하기 위해 표층 퇴적물중의 와편모. 조류 시스트와 유기물 분포에 대한 조사를 2002년 4월부터 2003년 1월가지 총 6회 실시하였다. 분석 항목 중 함수율, 강열감량, 화학적 산소요구량, 입자성 유기탄소, 입자성 유기질소, 식물색소량은 각각 $38.7\~68.9\%\;3.9\~\;12.5\%,\;9.60\~44.05\;m9O_2\;gdry^{-1},\;3.12\~13.14mgC\; gdry^{-1},\;0.49\~2.01mgN\;gdry^{-1}$ 및 $1.61\~29.51{\mu}g\;gdry^{-1}$ 범위로 나타났다. 시스트는 18속, 31종 2미동정으로 총 33종이 동정되었으며, 우점종은 주로 독립영양종인 Spiniferites bulloideus와 Scrippsiella trocho-idea가 나타났으며 현존량은 $42\~2,880\;cysts\;gdry{-1}$ 범위로 출현하였다. 유기물 농도와 시스트 현존량은 연안해역보다 육상에서 멀리 떨어진 외해역에서 높게 나타났으며, 유기물 기원은 육상기원보다는 해역자체 생산에 의해 지배되고 있는 것으로 나타났다. 주성분분석결과 4월과 7월 모두 제1주성분은 "외해 유기물 집적"을, 제2주성분은 "시스트 출현량"에 의해 집약되는 특성으로 판단 할 수 있었으며, 득점분포도에 의해 남해 중앙부 해역은 3개의 해역으로 나누어졌다.
본 연구는 외부 요인을 모형에 강화시켜 암호화폐 수익률 예측력을 향상시키는 방법에 대해서 다루고 있다. 고려한 요인으로는 크게 나누어 금융 경제적 요인 및 심리적 요인을 고려하였다. 먼저 금융 경제적 요인을 반용하기 위해서 주성분 요인을 사용하여 수 많은 변수를 차원축소를 통해서 모형에 반영하였다. 또한 심리적 요인을 위해서는 뉴스 기사 데이터를 활용하여 산출해낸 감성지수를 활용하였다. 이러한 요인들은 충격반응함수 분석을 통해서 요인들의 의미와 영향력을 시각화하였다. 또한 전통적인 ARIMAX 뿐 만 아니라 랜덤포레스트 및 딥러닝 모형을 활용하여 비선형성을 반영하였다. 그 결과 요인 강화가 암호화폐 수익률 예측력을 향상시킴을 실증분석을 통해 밝혔으며 그 중에서 딥러닝 모형인 GRU가 가장 좋은 예측 성능을 보임을 관찰하였다.
본 연구에서는 기온과 강수특성을 함께 고려하여 남한의 기후지역을 구분하였다. 먼저 계절별 기온 및 강수량 분포를 살펴보았는데, 기온은 모든 계절에서 지형 및 위도에 의해 영향을 받았다. 강수량은 여름철에 집중되고 지역적으로는 강원 영동, 남해안, 제주에서 많았고 경북 중부지역에서 적은 분포를 보였다. 기온 및 강수량의 경험적 직교함수(Empirical Orthogonal Function)분석을 통해서 산출된 주성분점수를 입력변수로 하여 평균연결법과 Ward법을 이용한 군집분석을 수행하였다. Ward법은 지형, 위도, 해양의 효과와 기압계 이동 방향에 따른 특성을 잘 반영하였으며 행정구역에도 잘 맞게 구분되어 가장 좋은 군집결과를 보여주었다.
북서태평양에서 발생하는 열대 저기압의 이동경로에 대한 변화패턴을 1951-2007년의 열대 저기압 경로 자료에 경험적 직교함수(Empirical Orthogonal Function, EOF)법을 적용하여 분석하였다. 북서태평양을 $5^{\circ}\times5^{\circ}$의 격자간격으로 나뉘어 연별 열대 저기압의 이동빈도를 각 격자에서의 변수로 정의하였다. 첫번째 모드는 동서성분(동경125도 기준)을, 두번째 모드는 남북성분(필리핀 동쪽해상에서 남지나해를 가로지르는 축 중심)을, 그리고 세번째 모드는 대각성분(타이완 동쪽 해상을 중심으로 동북방향과 동남방향을 축으로 하는)으로 나누어짐을 알 수 있었다. 첫번째와 두번째 모드의 주성분 시계열에서 각각 1997년과 1991년 부근을 기점으로 해서 주성분들의 부호가 교차되는 데, 이는 1990년대 이전 약 20년 동안에 남중국해 부근지역에서의 열대 저기압 이동 빈도가 동아시아 중위도 지역에서는 최근 20년 동안에 더 높았던 것과 관련성이 있는 것으로 보였다. 열대 저기압 발생의 경우, 첫번째와 두번째 모드에서 고유벡터 값이 음이고 진로가 북서태평양으로 주로 이동했던 열대 저기압은 고유벡터가 양의 값을 보였던 열대 저기압보다 더 동쪽에서 발생했던 것으로 나타났다. 이동특성에 있어 첫번째 모드는 바이칼호 남쪽에서 형성되는 기압 패턴에, 두번째 모드는 $30^{\circ}N$ 부근을 중심으로 남과 북 사이에 형성된 진동패턴에, 세번째 모드는 일본 부근에 위치한 기압패턴에 의해 열대 저기압의 이동경향이 많은 영향을 받는 것을 알 수 있었다. 또한, 해수면 온도 아노말리 값과 상관분석결과 첫번째 모드는 $Ni\tilde{n}o$-3.4 지수와 높은 음의 상관관계를 보여 ENSO의 영향을 받고 있음을 알 수 있었다.
평가지표와 같은 수치형 자료의 경우 수치 형태보다 엑셀(Excel)의 방사형 차트 형태로 나타내 시각적으로 표현하면 정보 전달에 더욱 효과적일 것이다. 그러나 개체가 많은 경우 시각적으로 판별하거나 분류하는 것이 쉽지 않다. 이럴 경우 각 개체에 대해 방사형 차트를 이용하여 형상화 시킨 후, 형상의 정보를 대표할 수 있는 형상점을 찾고 형상좌표로 변환해 형상분석을 적용하여 분류 및 판별하는 방법을 알아보고자 한다. 형상분석을 이용하기 위해 주로 분석자의 주관으로 형상점을 얻고 임의의 좌표공간을 생성시켜 좌표를 얻곤 했다. 방사형 차트는 해당 개체의 특징을 나타내는 변수의 개수만큼 형상점이 생기게 되고 이를 선으로 이은 것은 하나의 형상으로 여겨진다. 따라서 중심을 원점으로 두고 2차원 공간으로 정의를 내린 후, X축과 각 특징을 나타내는 축이 이루는 각에 대해 삼각함수를 적용해 형상좌표를 추출해낸다. 변수의 개수가 많아 형상의 모양이 복잡해질 경우 방사형 차트를 이용해 시각화하더라도 쉽게 파악하기 어렵다. 독립성을 보장할 수 없는 변수들에 대해 주성분 분석(PCA)을 실시하여 시각적으로 효과적인 형상을 만든다. PCA를 실시하기 전과 후의 형상에 대해 전통적 판별분석, 서포트벡터머신(support vector machine; SVM), 인공신경망(artificial neural network; ANN)의 기법을 적용시켜 분류표와 분류율을 확인한다. 또한 GPA (generalized procrustes analysis) 적합좌표, 북스테인좌표 2가지 좌표에 대한 판별의 차이를 비교한다. 북스테인좌표의 경우 기저 형상점을 중심으로 형상의 위치와 회전, 척도를 변환한 좌표로써, 분류율에 대해 GPA 형상좌표보다 더 높은 결과를 보이고 있다. 북스테인좌표의 경우 여러 군집 간의 형상을 비교하는데 유용하게 활용된다.
일반적으로 목조문화재의 변색은 장식용 목재에서 자주 발견되는 현상으로 여겨지는 경우가 많아, 이번 연구에서는 현충사 옛집을 대상으로 기둥 하부와 하방 등 지면과 인접한 목부재에서 나타나는 백색 변색 현상에 대해 목재단면 성능 조사, 미생물 조사, 현미경 관찰(SEM, 조직 분석 등)을 통해 강도 및 미생물에 의한 영향을 알아보고자 하였다. 연구 결과, (1) 목부재 일부 구간에서 저항도가 낮게 측정되는 지점이 있었으나, 강도에 크게 영향을 미칠 정도는 아니었으며, (2) 변색 부위의 함수율이 정상 부위보다 상대적으로 높게 측정되었으나, 변색부와 정상부에서 채취한 미생물 조사 결과에서는 정상부의 미생물 종류 및 미생물계수(CFU)가 오히려 높게 나타났다. (3) SEM을 이용한 표면관찰 결과, 500배의 배율에서 크고 작은 알갱이들이 관찰되었으며, 알갱이 부분은 탄소(C), 산소(O), 규소(Si), 칼슘(Ca) 등이 주성분으로 구성되어 있고 일부에서 Na, Cl 등의 성분이 미량 검출되었다. (4) 변색부 시료에 대한 조직분석 결과, 변색은 바깥쪽 표면부에 한정하여 나타난 현상임을 알 수 있었다. 이상의 결과로 볼 때, 목조건축물의 부재에서 관찰되는 변색 현상은 강도와 직접적인 상관관계가 없었으며, 미생물이나 염 등이 변색에 미치는 영향도 거의 없는 것으로 나타났다.
본 연구에서는 PCA알고리즘을 이용한 최적 pRBFNNs 기반 나이트비전 얼굴인식 시스템을 설계 하고자 한다. 조명이 없는 주위 상태 하에서 조도가 낮기 때문에 CCD 카메라를 이용하여 영상을 획득하는 것이 어렵다. 본 논문에서는 낮은 조도에 의해 왜곡된 이미지의 품질을 나이트 비전 카메라와 히스토그램 평활화를 사용하여 향상시킨다. 그리고 얼굴과 비얼굴 이미지 영역 사이에서 얼굴 이미지를 검출하기 위하여 Ada-Boost 알고리즘을 사용한다. 추출된 고차원 특징 데이터를 저차원의 특징 데이터로 변환하기 위하여 데이터 차원축소 기법인 주성분 분석법(Principal Components Analysis; PCA)을 사용한다. 또한 인식 모듈로서 pRBFNNs(Polynomial- based Radial Basis Function Neural Networks) 패턴분류기를 소개한다. 제안된 다항식 기반 RBFNNs은 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 구성되어 있다. 조건부는 FCM (Fuzzy C-means) 클러스터링을 사용하여 입력공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 그리고 차분진화 (Differential Evolution; DE) 알고리즘을 사용하여 모델의 파라미터를 최적화 한다.
본 논문은 3차원 모델의 모양 기반 검색을 하기 위한 모델의 특징을 추출하는 방법을 제시한다. 3차원 모델의 특징 기술자는 모델에 대한 위치, 회전, 크기 변환에서 그 특징이 불변해야 하기 때문에, 모델을 정규 좌표계로 표시하기 위한 선(先)처리 작업이 필요하다. 우리는 선처리 작업을 위해서 주성분 분석 방법을 사용하였으며, 이 방법은 최소 경계 상자와 외접구의 생성을 위해서도 이용되었다. 제안한 알고리즘은 다음과 같다. 반지름 1인 외접구를 만들고, 구의 중심에 3차원 모델을 위치시킨 후, 반지름이 다른 동심구($r_i=i/n,\;i=1,2,{\ldots},n$)를 생성하고, 이 동심구들과 모델이 접하는 면을 구한 다음 그 면에 대한 곡률을 계산한다. 여기서 구한 곡률을 3차원 모델의 특징 기술자로 사용하게 된다. 실험 결과는 타 알고리즘에 비해 제안하는 방법이 상대적으로 적은 빈(bin) 수를 가졌음에도 불구하고 ANMRR 평가 함수에 의해 최소 0.1에서 0.6 이상의 성능 개선 효과가 나타나고 있음을 보여 준다. 본 논문은 색인 기법으로 $R{^*}-tree$를 사용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.