• Title/Summary/Keyword: 함수비 특성곡선

Search Result 176, Processing Time 0.032 seconds

A Study on the Effects of the Coefficient of Uniformity and Porosity on the Soil-Water Characteristic Curves of Sandy Soils (사질토의 함수특성곡선에 대한 균등계수와 공극율의 영향에 관한 연구)

  • Yoo, Kunsun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.5
    • /
    • pp.41-47
    • /
    • 2013
  • Well-graded and dense soils have good engineering properties. Unsaturated soil properties such as shear strength, compressibility and permeability are closely related to the soil-water characteristic curve of the soil. Therefore it is important to study the effects of the coefficient of uniformity and the porosity on the soil-water characteristic curve of the sandy soils, which are also related to the grain size distribution and the density of the soil, respectively. In this study soil-water characteristic curves (SWCCs) for six sandy soil specimens were investigated using Tempe pressure cells. The test data were best-fitted to Fredlund and Xing equation. The obtained fitting parameters and the characteristic points of SWCCs were discussed and correlated with the porosity and the coefficient of uniformity of the specimens. The results show that the smaller the porosity of the specimen becomes, the larger the value of the residual matric suction becomes, whereas the larger the coefficient of uniformity of the specimen becomes, the larger the value of the residual matric suction becomes. Regardless of the coefficient of uniformity, the smaller the porosity of the specimen, the flatter the max. slope of SWCC.

A Study for Unsaturated-Character of Weathered Granite Soil in Korea (국내 화강풍화토의 불포화 특성에 관한 연구)

  • Lee, Hyoungkyu;Lee, In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.13-20
    • /
    • 2009
  • Generally, soil is regarded as fully saturated in Geotechnical Engineering and under ground structure design. Because it is in convenience and safety. But soils treated in field are almost in unsaturated state. Design in unsaturated state is difficult comparing with saturated soil. In unsaturated soil mechanics, parameters are usually not constant unlike saturated soil mechanics. Additionally lab or field tests in unsaturated soil mechanics are required more cost, time and theoretical difficulty. One of essential requisites for examination about unsaturated soil is Soil-Water Characteristic Curve (SWCC). It show the relation between soil suction and soil water content. Through many studies in and out of country, computation and testing methods for SWCC were introduced. But in this the country, most soil is granite soil that is widely spread in Korea. And the studies for granite soil's SWCC are not enough yet. In this paper, through studying for existing proposal methods about computation SWCC and collection data for domestic granite soils, It was determined the suitable method for domestic granite soils, and computed each granite soil's SWCC. The purpose of this paper is establishing database for domestic granite soil's SWCC as each region to convenience for applying to actual affairs. For this, studying about existing proposal methods for SWCC was performed and a computer program Soil-Vision is used. Furthermore for verification theoretical and testing methods were also performed.

  • PDF

Soil-Water Characteristics and Hysteretic Behaviors on Unsaturated Pavement Subgrades in Test Roads (시험도로 노상토의 불포화 함수특성 및 이력현상)

  • Park Seong-Wan;Shin Gil-Ho;Kim Byeong-Soo
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.95-104
    • /
    • 2006
  • Hysteresis is a common feature exhibited in hydraulic properties of an unsaturated soil. This study focuses on hysteresis observed in a compacted weathered granite subgrade soils based on the pressure plate laboratory tests. It was found that the Soil-Water Characteristics Curve of a soil is hysteretic and unique. The results also show that the wetting and drying curves predicted using the Fredlund and Xing model is quite close to the laboratory-measured results. For a specific matric suction, water content or coefficient of permeability on a wetting curve is always lower than those found on a drying curve.

  • PDF

Construction and Application of an Automated Apparatus for Calculating the Soil-Water Characteristic Curve (자동 흙-함수특성곡선 시험장치 구축 및 활용)

  • Song, Young-Suk;Lee, Nam-Woo;Hwang, Woong-Ki;Kim, Tae-Hyung
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.281-295
    • /
    • 2010
  • A new, automated apparatus is proposed for calculating the Soil-Water Characteristic Curve (SWCC), representing a simple and easily applied testing device for continuous measurements of the volumetric water content and suction of unsaturated soils. The use of this apparatus helps to avoid the errors that arise when performing experiments. Consequently, the apparatus provides greater accuracy in calculating the SWCC of unsaturated soils. The apparatus is composed of a pressure panel, flow cell, water reservoir, air bubble trap, balance, sample-preparation accessories, and measurement system, among other components. The air pressure can attain 300 kPa, and a general test can be completed in a short time. The apparatus can simply control the drying process and wetting process. The changes in volumetric water content that occur during the drying and wetting processes are shown directly in the SWRC program, in real time. As a case study, we performed an SWCC test of Joomunjin sand (75% relative density) to measure matric suction and volumetric water content during both the drying and wetting processes. The test revealed hysteresis behavior, whereby the water content on the wetting curve is always lower than that on the drying curve for a specific matric suction, during the wetting and drying processes. Based on the test results, SWCCs were estimated using the Brooks and Corey, van Genuchten, and Fredlund and Xing models. The van Genuchten model performed best for the given soil conditions, as it yielded the highest coefficient of determination.

The Influence of Overburden Pressure and Volume Change on the Soil-water Characteristic Curve of Unsaturated Weathered Granite Soil (상재하중과 체적변형을 고려한 불포화화강풍화토의 함수특성곡선)

  • Lee, Younghuy;Kim, Taehan;Moon, Seokjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.53-60
    • /
    • 2010
  • The comprehensive tests on unsaturated weathered granite soils are carried out to obtain the soil-water characteristic curve that is the one of the essential requisites to study the unsaturated soil. The weathered granite soils were obtained at Palgong mountain in Daegu. The existing test results have been carried out without overburden pressures and volume changes. In this study, the volumetric pressure plate extractor is improved to consider two factors such as overburden pressure and volume change. The applied overburden pressures were 0, 25, 50, 75, 100kPa and volume changes were measured at each phase. he results of this study are summarized as follows: As the overburden pressure increases, the volumetric water content decreases at the same matric suction and the air entry value increases and gradient of curve at the transition zone and the size of the hysteresis loops decreases. As the overburden pressure increases, the degree of saturation increases at the same matric suction and degree of saturation of the wetting curve is higher than that of dry curve. The SWCC with volume changes are slightly larger than those without volume changes. The general equation proposed by Fredlund & Xing(1994) to fit the experimental result of the SWCC indicates good agreement. The empirical parameters a, n, m as overburden pressure show similar inclination as the existing results.

Estimation on Unsaturated Hydraulic Conductivity Function of Jumoonjin Sand for Various Relative Densities (주문진 표준사의 상대밀도에 따른 불포화 투수계수함수 산정)

  • Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2369-2379
    • /
    • 2013
  • The Soil-Water Characteristics Curve (SWCC) is affected by the initial density of soil under unsaturated condition. Also, the characteristic of hydraulic conductivity is changed by the initial density of soil. To study the effect of initial density of unsaturated soil, SWCC and the Hydraulic Conductivity Function (HCF) of Jumoonjin sand with various relative densities, 40%, 60% and 75% were measured in both drying and wetting processes. As the results of SWCC estimated by van Genuchten (1980) model, the parameter related to Air Entry Value(AEV), ${\alpha}$ in the wetting process is larger than that in drying process, but the parameters related to the SWCC slope, n and the residual water content, m are larger than those in wetting process. The AEV is increased or Water Entry Value (WEV) is decreased with increasing the relative density of sand. The AEV is larger than the WEV at the same relative density of sand. As the results of HCF estimated by van Genuchten (1980) model which is one of the parameter estimation methods, the unsaturated hydraulic conductivity maintained at a saturated one in the low level of matric suctions and then suddenly decreased just before the AEV or the WEV. The saturated hydraulic conductivity in drying process is larger than that in wetting process. The saturated hydraulic conductivity is decreased with increasing the relative density of sand in both drying and wetting processes. Also, the hysteresis in unsaturated HCFs between drying and wetting process was occurred like the hysteresis in SWCCs. According to the test results, the AEV on SWCC is decreased and the saturated hydraulic conductivity is increased with increasing the initial density. It means that SWCC and HCF are affected by the initial density in the unsaturated soil.

Landslide Analysis Using the Wetting-Drying Process-Based Soil-Water Characteristic Curve and Field Monitoring Data (현장 함수비 모니터링과 습윤-건조 함수특성곡선을 이용한 산사태 취약성 분석)

  • Lee, Seong-Cheol;Hong, Moon-Hyun;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.13-26
    • /
    • 2023
  • This study examined the soil-water characteristic curve (SWCC), considering the volume change, using wetting curves on the field monitoring data of a wireless sensor network. Special attention was given to evaluating the landslide vulnerability by deriving a matric suction suitable for the actual site during the wetting process. Laboratory drying SWCC and shrinkage laboratory tests were used to perform the combined analysis of landslide and debris flow. The results showed that the safety factor of the wetting curve, considering the volume change of soil, was lower than that of the drying curve. As a result of numerical analyses of the debris flow simulation, more debris flow occurred in the wetting curve than in the drying curve. It was also found that the landslide analysis with the drying curve tends to overestimate the actual safety factor with the in situ wetting curve. Finally, it is confirmed that calculating the matric suction through SWCC considering the volume change is more appropriate and reasonable for the field landslide analysis.

로지스틱 특성곡선을 이용한 발행시기 연구

  • Choe, Gyu-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.345-348
    • /
    • 2005
  • 소프트웨어 개발 후 인도 전 테스트 단계중에 발생되는 테스트 노력 소요량을 고려한 소프트웨어 신뢰도 성장 모델을 제시하여 테스트 노력소요량 동태를 시간함수인 로지스틱 곡선으로 설명한다. 테스트 단계중에 소요되는 테스트노력의 양에 대한 결함 검출비를 현재의 결함 내용에 비례하는 것으로 가정하여 소프트웨어 신뢰도 성장 모델을 비동차 포아송 프로세스(NHPP)로 공식화하여, 이 모델을 이용하여 소프트웨어 신뢰도 척도에 대한 데이터 분석기법을 개발한다. 그간 여러 문헌에서 소프트웨어 신뢰도 향상 모델을 연구할 때 소프트웨어 테스트 중에 소요되는 테스트노력의 양으로서 지수함수 곡선, 레일레이 곡선, 웨이불 곡선을 사용해 왔다. 그러나, 모든 소프트웨어 개발 환경에서 지금까지 제시된 그러한 곡선중 하나에 의해서 테스트노력 소요 곡선을 표현하는 것은 적절하지 못하다는 것이 밝혀지고 있다. 본 논문에서는 로지스틱 테스트노력 곡선이 소프트웨어의 개발/테스트 노력곡선으로 적절하게 표현될 수 있다는 것과 실제 데이터를 근거로 하여 적용하여서 예측성이 매우 좋은 능력을 가지고 있다는 것을 보이고자 한다.

  • PDF

Unsaturated Soil-Water Characteristics Curve with Silt Contents for Nak-Dong River Sand (실트함유율에 따른 낙동강 모래의 불포화 함수특성곡선)

  • Moon, Hongduk;Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.23-33
    • /
    • 2011
  • In this paper, we got soil-water characteristic curve(SWCC) of Nak-Dong River's sand respectively as relative density 40%, 60%, 80% and content of silt 0%, 10%, 20%, 30%. As a result, the more the sand densify in the same silt content and the more the sand has silt in the same relative density, the change of volume water content was decreased. we have known effect of silt contents for SWCC and verified existing empirical formula of SWCC. As experiment results of soil-water characteristic curves compared to the empirical solutions, the results of van Genuchten(1980) and Fredlund & Xing(1994) were well-matched showing S type curves with experiment results. Especially the empirical solution of Fredlund & Xing showed almost same results of the coefficient of correlation($R^2$) equal to 0.99.

Soil Water Characteristic Curve Using Volumetric Pressure Plate Extractor Incorporated with TDR System (TDR 측정시스템이 도입된 압력판 추출 시험기를 이용한 흙-함수특성곡선 연구)

  • Jung, Young-Seok;Sa, Hee-Dong;Kang, Seonghun;Oh, Se-Boong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.17-28
    • /
    • 2015
  • The purpose of this study is to measure the volumetric water content of unsaturated soils during drying and wetting process by using volumetric pressure plate extractor (VPPE) incorporated with time domain reflectometry (TDR). The VPPE consists of a pressure cell, a pressure regulator, a burette system and a TDR probe. Two samples with different initial void ratios were prepared in the pressure cell, and the air pressure at the range of 0.1 kPa - 50 kPa was applied to adjust the matric suction by the pressure regulator. The burette system was used to measure the volumetric water content change of the sample according to the matric suction. In addition, the TDR probe, installed in the cell, was used to evaluate the dielectric constant from the reflected signal of the electromagnetic wave at the probe. The volumetric water content of specimen was estimated by the empirical equation between the volumetric water content and dielectric constant, which was calibrated with the Jumunjin sand. The test results show that the volumetric water content calculated by TDR probe is strongly correlated to the measured value by burette system. The hysteresis occurs during drying and wetting process. Furthermore, the degree of hysteresis reduces in the repeated process. This study suggests that TDR may be effectively used to evaluate the water content soil for the determination of water characteristic curve of unsaturated soils.