• Title/Summary/Keyword: 함상 착륙

Search Result 8, Processing Time 0.033 seconds

Automatic Landing Flight Test of TR-60 Tilt Rotor UAV based on RTK GPS (RTK GPS 기반 TR-60 틸트로터무인기 자동착륙 비행시험)

  • Yu, Chang-Seon;Jang, Eun-Yeong;Song, Bok-Seop;Jo, Am;Park, Beom-Jin;Kim, Yu-Sin;Gang, Yeong-Sin;Choe, Seong-Uk;Gu, Sam-Ok
    • 한국항공운항학회:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.30-34
    • /
    • 2016
  • TR-60 틸트로터 무인기는 전장 3m, 최대이륙중량 200kg로서 2013년 2월 자동천이비행에 성공한 비행체로서 현재 해상운용을 위한 함상이착륙기술을 개발 중에 있다. 무인기 해상운용은 육상보다 심한 염무와 바람과 선박의 운동에 의한 착륙대의 이동 등의 열악한 환경에서 이루어져야 한다. 이동이 있는 착륙대와 착륙장 주변의 장애물을 고려하면 정확한 착륙을 위한 정밀한 항법유도가 요구된다. TR-60의 정밀항법유도를 위해서 수cm 단위의 정확도를 갖는 RTK GPS 기반의 정밀상대항법과 이동 착륙장 대한 자동착륙유도를 설계하고 구현함으로 함상자동 이착륙 기술을 개발하였다. 본 논문에서는 RTK GPS 기반의 정밀상대항법과 자동착륙유도에 대한 연구와 함상접근착륙절차에 따른 자동착륙정확도 측정 비행시험 결과를 기술하였다.

  • PDF

Development and Test of a Docking Type Automatic Landing System for Shipboard Landing (드론 함상 착륙을 위한 도킹 방식의 자동 착륙 시스템 개발 및 시험)

  • Minsu Park;Sungyug Kim;Hyeok Ryu
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.47-55
    • /
    • 2024
  • The paper presents a docking-type automatic landing system that works in tandem with Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs). The system utilizes a pyramid-shaped landing gear and pad for effective landing. In marine environments, a docking device guides the drone to land securely. To test the system, a ship's behavior was simulated using a 3-DoF motion platform, and the successful operation and utility of the docking-type automatic landing system were demonstrated.

Sea Wave Modeling Analysis and Simulation for Shipboard Landing of Tilt Rotor Unmanned Aerial Vehicle (틸트로터 무인기 함상이착륙 위한 파고운동 해석 및 시뮬레이션)

  • Yoo, Chang-Sun;Cho, Am;Park, Bum-Jin;Kang, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.731-738
    • /
    • 2014
  • The mission of UAV has been expanded from a land to an ocean based on an enhancement of its technologies. Korea Aerospace Research Institute (KARI) also tries to expand the mission of tilt rotor UAV to an ocean, in which the shipboard landing of UAV is required. However the environment of an oceanic operation is severer than that of land due to salty, fogy, and windy condition. The landing point for automatic landing is not fixed due to movement of shipboard in roll, pitch, and heave. It makes the oceanic operation and landing of UAV difficult. In order to conduct an oceanic operation of tilt rotor UAV, this paper presents that the sea wave modeling according to the sea state is conducted and the shipboard landing of tilt rotor UAV under the sea wave is tested and evaluated through the flight simulator for UAV.

Trade-Off Study of Shipboard Landing of Vertical Take-off and Landing Aircraft (수직이착륙 항공기의 함상이착륙 사례분석)

  • Yoo, Chang-Sun;Cho, Am;Park, Bun-Jin;Kang, Young-Shin
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.10-21
    • /
    • 2013
  • As helicopter technology has been upgraded, today its oceanic operation is considered to be usual. In oceanic operation of helicopter, the effect of severe wind, wave, and corrosion must be investigated and the operation procedures for safety as well as the motion of shipboard arising from maneuvers of ship must also be considered. In this paper, it describes the result of trade-off study for shipboard landing and its operation procedure including dynamic interface between ship and aircraft in ship operation and gives a simulation results to implement the oceanic operation of tilt rotor aircraft.

Helicopter Landing Gear Ground Reaction Simulation (헬리콥터 강착장치 시뮬레이션)

  • 최형식;전향식;오경륜;배중원;남기욱
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2004.05a
    • /
    • pp.131-135
    • /
    • 2004
  • Landing gear force reaction module is important for aircraft take off and landing simulation. But usually this modulo is not accounted for control law design simulation. because it does not affect the flying quality of aircraft. Now a days, this module is getting more important according to the increase of needs for training purpose simulation and specific control law design such as unmaned aircraft landing on the moving platform. In this paper 1DOF mass spring simple force system per gear was accepted.

  • PDF

Guidance and Control System Design for Automatic Carrier Landing of a UAV (무인 항공기의 함상 자동 착륙을 위한 유도제어 시스템 설계)

  • Koo, Soyeon;Lee, Dongwoo;Kim, Kijoon;Ra, Chung-Gil;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1085-1091
    • /
    • 2014
  • This paper presents the guidance and control design for automatic carrier landing of a UAV (Unmanned Aerial Vehicle). Differently from automatic landing on a runway on the ground, the motion of a carrier deck is not fixed and affected by external factors such as ship movement and sea state. For this reason, robust guidance/control law is required for safe shipboard landing by taking the relative geometry between the UAV and the carrier deck into account. In this work, linear quadratic optimal controller and longitudinal/lateral trajectory tracking guidance algorithm are developed based on a linear UAV model. The feasibility of the proposed control scheme and guidance law for the carrier landing are verified via numerical simulations using X-Plane and Matlab/simulink.

Heave Motion Estimation of a Ship Deck for Shipboard Landing of a VTOL UAV (수직이착륙 무인기 함상 착륙점의 상하 운동 추정)

  • Cho, Am;Yoo, Changsun;Kang, Youngshin;Park, Bumjin
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.3
    • /
    • pp.14-19
    • /
    • 2014
  • When a helicopter lands on a ship deck in high sea states, one of main difficulties is the ship motion by sea wave, In case of a manned helicopter, a pilot lands a helicopter on the deck during quiescent period of ship motion, which is perceived from different visual cues around landing spot. The capability to predict this quiescent period is very important especially for shipboard recovery of VTOL UAV in harsh environments. This paper describes how to predict heave motion of a ship for shipboard landing of a VTOL UAV. For simulation, ship motion by sea wave was generated using a 4,000 ton class US destroyer model. Heave motion of ship deck was predicted by applying auto-regression method to generated time series data of ship motion.