• Title/Summary/Keyword: 할증계수

Search Result 7, Processing Time 0.018 seconds

Estimating Method of Topographic Factor of Design Wind Speed Using GIS (GIS를 이용한 지형에 의한 풍속할증계수 산정 방법)

  • Choi, Se-Hyu;Seo, Eun-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.126-135
    • /
    • 2013
  • With more than 70% of the country consisting of mountains, Korea has large and small mountains, and hills located in the inner cities. Therefore, Korea's architectural structure laws stipulate that an increase in wind speed due to the influence of terrain should be considered in the design of wind loads of buildings. But if more than two mountains are located around the building or if the boundaries of the land surface are not clear when calculating topographic factors of wind speed, the designer has subjectively selected the coverage of the topographic factors of wind speed or the surface. This may lead to unscientific design of wind loads. This study attempts to analyze topographic factors of wind speed by using a 1:5000 topographic map with relatively high location accuracy and thereby to reflect changes due to the topographic characteristics and influence at the point where the building is located. By also selecting terrain surfaces and vertexes through Arc GIS and presenting a scientific approach to determine the range of topographic factors of wind speed, this study is expected to make a contribution for more rational and cost-effective wind-resistant design of buildings.

A Study on the Estimation for the Guaranteed Strength and Construction Quality of the Combined High Flowing Concrete in Slurry Wall (지하연속벽용 병용계 고유동 콘크리트의 시공 품질 및 보증강도 평가에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.811-817
    • /
    • 2006
  • The primary purpose of this study is to estimate the guaranteed strength and construction quality of the combined high flowing concrete which is used in the slurry wall of underground LNG storage tank. The required compressive strength of this type of concrete become generally known as a non economical value because it is applied the high addition factor for variation coefficients and low reduction factor under water concrete. Therefore, after estimation of the construction quality and guaranteed strength in actual site work, this study is to propose a suitable equation to calculate the required compressive strength in order to improve its difference. Application results in actual site work are shown as followings. The optimum nix design proportion is selected that has water-cement ratio 51%, sand-aggregate ratio 48.8%, and replacement ratio 42.6% of lime stone powder by cement weight. Test results of slump flow as construction quality give average 616~634mm. 500mm flowing time and air content are satisfied with specifications in the rage of 6.3 seconds and 4.0% respectively. Results of strength test by standard curing mold show that average compressive strength is 49.9MPa, standard deviation and variation coefficients are low as 1.66MPa and 3.36%. Also test results by cored cylinder show that average compressive strength is 66.4MPa, standard deviation and variation coefficients are low as 3.64MPa and 5.48%. The guaranteed strength ratio between standard curing mold and cored cylinder show 1.23 and 1.32 in the flanks. It is shown that applied addition factor for variation coefficients and reduction factor under water concrete to calculate the required compressive strength is proved very conservative. Therefore, based on these results, it is proposed new equation having variation coefficients 7%, addition factor 1.13 and reduction factor 0.98 under water connote.

Estimation of Topographic Effects over 3-Dimensional Hills with Different Slopes through Wind Tunnel Tests (경사가 다른 3차원 산악지형에서의 풍동실험을 통한 풍속할증평가)

  • Cho, Kang-Pyo;Cheong, Myung-Chae;Cho, Gi-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.379-386
    • /
    • 2007
  • In this paper, topographic factors over 3-dimensional hills were estimated through wind tunnel tests. Topographic models having five different slopes of $5.71^{\circ}, \;11.31^{\circ},\;16.70^{\circ},\;21.80^{\circ}$, and $26.57^{\circ}$ which were based on Korean Building Code(KBC(2005), were made for wind tunnel tests. From the result of wind tunnel tests, topographic factors over 3-dimensional hills were obtained at various locations, and the ranges of topographic effects were decided. The ranges of topographic effects was whole area of the hills in the horizontal ranges and heights of 3.5 times of the hills in the vortical ranges. Topographic effects was large at the top of hills, and wind velocity was increased 57% over hill of $5.71^{\circ}$, 75% over hill of $11.31^{\circ}$, 79% over hill of $16.70^{\circ}$, 81% over hill of $21.80^{\circ}$, and 61% over hill of $26.57^{\circ}$. Wind velocity was bigger over surface of across-wind direction of hills than one over surface of wind direction of hills, and wind velocity was increased $10{\sim}30%$ at locations of across-wind direction.

Guideline for Bridge Design Wind Speed in Coastal Region (해안지역 교량 설계풍속 산정 가이드라인)

  • Lee, Sungsu;Kim, Junyeong;Kim, Young-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.615-623
    • /
    • 2015
  • Estimation of wind load on bridges is one of the most important aspects in designing bridges in coastal region. Various design codes and researches have suggested the procedure to estimate design wind speed; however, they do not match one another due to many reasons such as incomplete data set, ignorance of wind environment and so on. For this reason, the necessity of guideline for estimation procedure of basic wind speed which reflect the roughness of surface and the topographical effect have been increasing. In this study, we have analysed limitations of the basic wind speed of nationwide suggested by Korea Building code(AIK, 2009) and Highway bridge design code(MOLTMA, 2010). In additional, we set forth guidelines considering the roughness of land surface and the topographical effect. Using the procedure, the basic wind speed were estimated for 15 coastal regions in Korea and compared with those listed in the existing codes.

Study on the Seismic response Spectra of a Structure Built on the Deep Soil Layers Classified in UBC-97 (UBC-97에 분류된 깊은 지반위에 세워진 구조물의 지진응답 스펙트럽에 관한 연구)

  • 김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.63-76
    • /
    • 2000
  • 구조물-지반 상호작용에서 알려진 것처럼 구조물 지진응답은 구조물하부 지반조거에 따라 영향을 받는데 UBC-97을 포함한 여러내진설계규준에서 지반사태 영향을 반영하고 있다 이 연구에서는 기초크기 기초밑 지반깊이, 입력지진 작용점 및 기초 근입깊이 등의 영향을 살펴보고 깊은 지반 위에 세워진 구조물의 평균응답스펙트럼을 UBC-97 탄성응답스펙트럼과 비교하기 위해 구조물-지반 상호작용을 고려한 지진해석을 가상 3차원 유한요소법과 부구조물법을 이용하여 1952년 Taft와 1940년 El Centro 지진기록을 주파수영역에서 수행하였다 연구결과에 의하면 기초크기는 구조물 응답에 별 영향이 없고 기초저면 지반깊이는 구조물체계의 고유주기와 최대가속도를 변경시켰다 또 입력지진의 합리적 작용점은 기초저면이라는 것이 확인되었으며 깊은 지반위에 놓인 기초의 근입은 저주기영역에서 구조물 응답을 상당히 줄어들게 하였다 한편 30m 깊은 지반위에 세워진 구조물의 평균가속도와 UBC-97 가속도를 비교한 결과 UBC-97 탄성응답스펙트럼에 의한 구조물 내진설계가 안전하지 못할 수도 있으므로 UBC-97 지진계수의 할증이 필요하다.

  • PDF

A Study on the Estimation of Proper Construction Cost for Road Pavement Maintenance Work (아스팔트포장 유지보수 적정공사비 산정방안 연구)

  • Oh, JaeHun;Song, TaeSeok;An, BangYul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.6
    • /
    • pp.16-26
    • /
    • 2020
  • Road Pavement Maintenance Work is generated in a variety of different field conditions, and it is difficult to calculate the construction cost because there are no detailed criteria when preparing the estimated construction cost. Unlike new pavements, Road Pavement Maintenance has to be constructed with operating vehicles, and there are many differences in productivity depending on urban areas, limited work hours, night-time, construction area, etc. To compensate for this, the standard for calculation of construction cost provides additional charges for the number of lanes, residential areas, working hours, and night work, but it applied differently depending on construction officials. In this study, construction cost estimation standards that can properly reflect the conditions of the site was investigated for major types of Road Pavement Maintenance work. The site was investigated and analyzed mainly for many construction sites with 'overlay of asphalt after cutting', 'restore surface', 'repair of pavement', and 'recovery of roadway'. The criteria for the application of construction volume separately according to working hours, public places, and land area including extra charges for basic downtown and residential area. The hours of operation were divided into three types(7 hours, 5 hours, 3 hours) excluding movement and preparation time, and each type provided a coefficient for dividing the area of the construction site into five types. The construction cost calculation method based on the construction purpose is site conditions is proposed accordingly, and it is deemed that a plan for the designer to calculate the construction cost has been prepared in consideration of the site conditions.

Design Graphs for Asphalt Concrete Track with Wide Sleepers Using Performance Parameters (성능요소를 반영한 광폭 침목형 아스팔트콘크리트 궤도 설계그래프)

  • Lee, SeongHyeok;Lim, Yujin;Song, Geunwoo;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.331-340
    • /
    • 2016
  • Wheel load, design velocity, traffic amount (MGT), stiffness and thickness of sub-layers of asphalt concrete track are selected as performance design parameters in this study. A pseudo-static wheel load computed considering the dynamic amplification factor (DAF) based on the design velocity of the KTX was applied to the top of asphalt concrete track for full three dimensional structural analysis using the ABAQUS program. Tensile strains at the bottom of the asphalt concrete layer and vertical strains at the top of the subgrade were computed from the structural FEA with different combinations of performance parameter values for one asphalt concrete track section. Utilizing the computed structural analysis results such as the tensile strains and the vertical strains, it was possible to develop design graphs to investigate proper track sections for different combination of the performance parameters including wheel load, design velocity, traffic amount(MGT), stiffness and thickness of asphalt concrete layers for any given design life. By analyzing the proposed design graphs for asphalt concrete track, it was possible to propose simple design tables that can be used by engineers for the effective and fast design of track.