• Title/Summary/Keyword: 한복균

Search Result 10, Processing Time 0.045 seconds

Antimicrobial Effect of Lactic Acid Bacteria Isolated from Kimchi and Tarak on Helicobacter pylori (김치와 타락에서 분리한 젖산균의 Helicobacterpylori에 대한 항균 효과)

  • Lee, Young-Duck;Yoo, Hye-Lim;Hwang, Ji-Yeon;Han, Bok-Kyung;Choi, Hyuk-Joon;Park, Jong-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.4
    • /
    • pp.664-669
    • /
    • 2010
  • Lactic acid bacteria from traditional Korean foods of Tarak and Kimchi was isolated and characterized against carcinogenic Helicobacter pylori. Five Tarak and 30 Kimchi, traditional lactic acid-fermented foods, were collected from Andong area and the markets in Seoul, respectively and 15 lactic acid bacteria were isolated. Among them, two isolates were selected from high growth-inhibitory activities on H. pylori. The isolates were identified as Streptococcus thermophilus LAB kw15 from Tarak and Leuconostoc mesenteroides LAB kw5 from Kimchi by the biochemical characteristics and 16S DNA sequencing. The culture solutions of the isolates adjusted to pH 7.0 showed H. pylori inhibition. The isolates grew well and H. pylori did not grow during the co-culture with those strains. Therefore, L. mesenteroides LAB kw5 and S. thermophilus LAB kw15 might be the candidates as the functional lactic acid bacteria for improving stomach health.

Isolation of Lactobacillus plantarum HB1 from Tongchimi and Its Nitrite-Scavenging Effect (동치미로부터 분리된 유산균 Lactobacillus plantarum HB1의 아질산염 소거 효과)

  • 유형재;이선숙;이동석;김한복
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.192-196
    • /
    • 2003
  • To obtain large pools of lactic acid bacteria, a strain was isolated from Tongchimi. Through its sugar fermentation and analysis of 16S rRNA gene, it was identified to be Lactobacillus plantarum HB1. This strain is Gram-positive and catalase-negative. In the range of 1~88 bp in the HB1 16S rRNA gene, the HB1 strain was homologous with other L. plantarum strains by almost 100%, and in the range of the rest 32 bp, the HB1 strain showed considerable variation, compared to other strains. Nitrate which may exist in radish can be easily converted to nitrite. The nitrite interacts with amine, and becomes nitrosamine which may cause stomach cancer. The culture obtained by HB1 strain could eliminate 400 ${\mu}M$ nitrite within 1.5 hr. It is necessary to isolate specific components which are involved in nitrite elimination in the culture and to study on its mechanism.

Synergistic Inhibition of IgY, Auricularia auricula, and Lactic Acid Bacteria from Kimchi and Tarak on Helicobacter pylori (Helicobacter pylori 의 생육억제에 대한 유산균, 난황항체 및 목이버섯의 상승효과)

  • Yoo, Hye-Lim;Lee, Young-Duck;Han, Bok-Kyung;Choi, Hyuk-Joon;Park, Jong-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • The substances of lactic acid bacteria (LAB) isolated feom Kimchi and Tarak, L. mesenteriodes LAB kw5, and S. thermophilus LAB KW15 were investigated for growth effect of Helicobacter pylori with IgY and Auricularia auricula. Inhibition of H. pylori was confirmed at LAB KW5 and KW15 supernatants. Interestingly, anti-H. pylori substance in LAB KW5 and KW15 supernatants were sensitive to lipase, but insensitive to protein hydrolase and carbohydrate hydrolase. The inhibition zone toward H. pylori was not shown with the lipase-treated supernatants. Therefore, there seemed to be lipid-like substances in the cultures. By the analyses with gas chromatography, undecanoic acid ($C_{11:0}$), palmitic acid ($C_{16:0}$), stearic acid ($C_{18:0}$), and oleic acid ($C_{18:1}$) were detected at the culture substances from L. mesenteroides LAB KW5 and S. thermophilus LAB KW15, and more eicosadienoic acid ($C_{20:2}$) from L. mesenteroides LAB KW5. Anti-H. pylori substances of LAB with IgY and A. auricula extract were analyzed for inhibition effect of H. pylori. The inhibition increased more by the range from 57% to 86% by the mixture. The substances with IgY and A. auricula extract showed more effective inhibition of H. pylori than single or double trials.

Cloning and Expression of an $\alpha$-Amylase Gene from Bacillus circulans in B. subtilis and B. megaterium (Bacillus circulans $\alpha$-amylase 유전자의 Basillus subtilis와 Bacillus megaterium에서의 클로닝 및 발현)

  • 이동석;김지연;김한복
    • Korean Journal of Microbiology
    • /
    • v.36 no.3
    • /
    • pp.203-208
    • /
    • 2000
  • A Baczllus circdans KCTC3004 $\alpha$-amylase gene contained in a recombinant plasmid pAL850 was transferred into a new shuttle vector plasmid pALSIlI by ligating linearlzed DNAs of pUC19 and pUB110. B. subtilis RM125 and B. megatenurn ATCC14945 transfonned with pALS111 produced the $\alpha$-amylase substantially Most of the enzyme was produced during the exponential growth period. The maxiinurn activities of the $\alpha$-amylase produced by the Bucillus transformants were compared with that of the B. circulans gene donor strain. The B. subtilis RM125(pALS111) enzyme showed the actlvicy 95 times higher than that of the gene donor cells, followed by the B, nzegaterium ATCC14945(pALSlll) enzyme with activity 34 limes higher than that of the gene donor cells. While E coli secreted about 10% of the produced enzyme, B. subtilis excreted the enzyme inlo the medium wholly and B. megaterirun about 98% ofthe total product. The plasmid pALSI11 was quite stable inB. nzegaterium (92%), inoderately stable in B. subtilis (76%), but was unstable in E. coli (38%). The SDS-PAGE and zymogram of this enzyme produced in E. coli(pALS111), B. subtilis( pALS111) or B. megateril~m (pALS111) indicated a molecular weight of 55,000. The enzymes overproduced in three different host cells hydrolyzed starch to produce mainly maltoaiose and mallooligosaccharides.

  • PDF

Antioxidant Activity of Fermented Barley, Wormwood, Sea Tangle, and Soybean (발효 보리, 쑥, 다시마, 대두의 항산화효과)

  • 유형재;이승훈;이동석;김한복
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.230-233
    • /
    • 2002
  • Superoxide is involved in causing inflammation, cancer, and arteriosclerosis in many cases. Taking antioxidant material can be helpful in preventing the diseases. Natural food such as barley, wormwood, sea tangle, and soybean contain antioxidant ingredients. Antioxidant activity increase was determined by fermenting them with microorganism. To determine the activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) solution was used. When barley, wormwood, sea tangle, and soybean were fermented with Bacillus lichenifomis Bl, antioxidant activities of each fermented product increased 2.6, 1.6, 2.7, and 1.7 folds, respectively. Also, absorbance of fermented soybean was higher than that of soybean at the range of 250~290nm, which might be involved in differences of antioxidant activity of the two. Paraquat suppressed Esherichia coli DH5$\alpha$ growth by making superoxide inside the strain. However, when ethanol extract from fermented soybean was added into the GM (glucose-mineral) media containing the strain, its growth was recovered, suggesting that ethanol extract can move across E. coli, and can function as anti-oxidant material in vivo. Thus, it will be possible to develope antioxidant material from fermented soybean which can be taken orally.

Cloning and Expression of an Acidophilic $\alpha$-Amylase Gene from Bacillus circulans in Escherichia coli (Bacillus circulans의 호산성 $\alpha$-amylase 유전자의 클로닝 및 발현)

  • 이종석;김지연;김한복;이동석
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.112-118
    • /
    • 2000
  • A new gene encoding an acidophilic TEX>$\alpha$-amylase of Bacillus cil-culans KCTC3004 was cloned into Eschericlzia coli using pUC19 as a vector. The gene localized in the 5.8 kb PstI DNA fragment was expressed independently of its orientation in the cloning vector showing enzyme activity about 40 times greater than that produced by the original B, circulans The optimum pH and temperature of the cloned enzyme were pH 3.6 and 45^{\circ}C.$ respectively. The enzyme hydrolyzed starch to produce maltotriose and maltooligosaccharides. The SDS-PAGE and zymopram of the enzyme produced in E coli(p.4L850) indicated a molecular weight of 55,000.

  • PDF

Expression of a $\beta$-1,3-Glucanase Gene from Bacillus circulans in B. subtilis and B. megaterium (Bacillus subtilis와 Bacillus megaterium에서의 $\beta$-1,3-glucanase 유전자의 발현)

  • 김기훈;김지연;김한복;이동석
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.253-258
    • /
    • 2001
  • A Bacillus circulans KCTC3004 $\beta$-1,3-glucanase gene contained in a recombinant plasmid pLM460 derived from subcloning the original recombinant plasmid pLM530 was trasferred into a new shuttle vector plasmid pLMS1180 by ligating linearized DNAs of pLM460 and pUB110. B. subtilis RM125 and B. megaterium ATCC14945 transformed with pLMS1180 produced the $\beta$-1,3-glucanase substantially. Most of the enzyme was produced during the exponential growth period. The maxium activities of the $\beta$-1,3-glucanase produced by the Bacillus transformants were compared with that of the B. circulans gene donor strain. The B. subtilis RM125 (pLM1180) enzyme showed the activity 14 times higher than that of the gene donor cells, followed by the B. megaterium ATCC14945 (pLMS 1180) enzyme with activity 5 times higher than that of the gene donor cells. While E. coli secreted about 7% of the produced enzyme, B. subtilis excreted the enzyme into the medium wholly and B. megaterium about 97% of the total product. The SDS-PAGE of this enzyme produced in E. coli (pLMS1180), B subtilis (pLMS1180) or B. megaterium (pLMS1180) indicated a molecular weight of 38,000. The enzymes overproduced in three different host cells hydrolyzed laminarin to produce mainly laminaribiose, laminaritriose, and laminarioligosaccharides. The plasmid pLMS1180 was stable in B. megaterium, E. coli, but was unstable in B. subtilis.

  • PDF

Molecular Cloning and Expression of a Cellulolytic Xylanase Gene from Bacillus circulans in Escherichia coli (Bacillus circulans 기원의 Cellulolytic Xylanase 유전자의 대장균에서의 클로닝 및 발현)

  • 이동석;김지연;김한복
    • Korean Journal of Microbiology
    • /
    • v.36 no.3
    • /
    • pp.196-202
    • /
    • 2000
  • A gene for cellulolytic xylanase of Bacillus circulnns ATCC21365 was cloned on pUC 19 in Eschwichia coli. The recombinant plasniid pXLI80 contained an 1.8 id, inselt composed of0.5 kb and 1.3 kb PslI fragments derived from B, circulans. The 0.5 kh fragment in the upstream region of 1.3 kb one was confirmed lo be indispensable for not only expression but also hyperexpression of the cloned gene. The transformant overproduced the xylanase 135 times greater than that produced by the orlginal B circulnns. The optimum pH and temperature of the cloned enzyme we]-e pH 5.2 and $60^{\circ}C$, respectively. Heal pretl-eatment at TEX>$55^{\circ}C$C for 1 Indid not cause inhibition of the activity of this enzyme. The elm.ynie could hydl-olyre CMC and lichenan as well as xylan to produce xylose(or GI), xylohiose(or G2) and xylolnose(or G3) as inah products. Hence We defined the cloned enzyme as a cellulolytic xylanase. The SDS-PAG electrophoretic mobility and zyiiogram of this enzyme derived from whole cell extracts or c~~lture supematants or E. coli(pXL180) indicated a molecular weight of 45,000 and nonprocessing of the enzyme in the peilplasln of E. coli.

  • PDF

Characterization of Bacillus licheniformis B1 ${\beta}$-1,4-Glucanase Overproduced in Escherichia coli (대장균에서 과잉생산된 Bacillus licheniformis B1의 ${\beta}$-1,4-Glucanase 특성)

  • Song, Hye-Jung;Kim, Hwang-Yeon;Hwang, Jae-Sung;Kim, Han-Bok
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.68-72
    • /
    • 2010
  • The ${\beta}$-1,4-glucanase gene of Bacillus licheniformis B1 was expressed in Esherichia coli BL21, and a protein with a mass of 50 kDa that was soluble was overproduced. A protein with a mass of 37 kDa was secreted from B. licheniformis. It seems that the ${\beta}$-1,4-glucanase produced in E. coli contained the leader peptide and unprocessed carboxy-terminal region, but its processing occurred in the carboxyterminal in Bacillus. The optimal temperature of ${\beta}$-1,4-glucanase was $40^{\circ}C$. The enzyme still had 76% maximal activity at $60^{\circ}C$. The optimal pH of the enzyme was 7. The enzyme retained considerable activities over the weak-acidic, neutral, and weak-basic pH range. Acidic fungal cellulases are used in food, detergent, pulp, paper, textile industries. However, studies about neutral and alkaline cellulase are not enough. The cellulase developed in this study may be useful for industrial applications in the fields of biofuel development.