• Title/Summary/Keyword: 한글 인쇄체

Search Result 55, Processing Time 0.028 seconds

A Study on Character Recognition using Connected Components Grapheme (연결성분 자소를 이용한 문자 인식 연구)

  • Lee, Kyong-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.157-160
    • /
    • 2017
  • 본 연구에서는 한글 문자 인식을 수행하였다. 한글 인식을 수행하되 고딕 인쇄체 문자를 대상으로 하였고, 자소 단위 인식을 통한 인식을 수행하되 기존 한글 문자 인식 연구에서 사용하는 자음과 모음 단위의 자소가 아닌 연결성분을 이용하여 인식하는 새로운 자소를 이용하였다. 새로운 자소들은 끝점, 2선 모임점, 3선 모임점, 4선 모임점의 특징을 추출하고 특징에 의해 자소를 인식하는 데이터베이스를 구성하여 자소를 인식하게 하였다. 또한 연결 성분을 반영한 새로운 자소로 고딕 인쇄체 문자를 인식하므로 추출된 자소를 6가지로 분류하였고, 6가지 자소에 의해 구성되는 92가지 문자 구조를 제안하고 이에 따른 문자를 데이터베이스를 구축하였고, 자소의 무게 중심을 이용한 분포를 이용하여 제안된 구조를 통하여 데이터베이스를 이용한 문자인식을 수행하였다.

  • PDF

A Method of Machine-Printed Hangul Recognition using Grapheme Recognizer (낱자 특징 기반 자소 인식기를 이용한 인쇄체 한글 인식방법)

  • Jang, SeungIck;Nam, Youn-Seok
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.351-354
    • /
    • 2004
  • 본 논문에서는 낱자에서 추출한 특징을 입력으로 사용하는 자소 인식기를 이용한 저해상도 인쇄체 한글 영상의 인식 방법을 제안하였다. 제안한 방법에서는 입력 문자를 한글 6 형식과 기타 형식의 문자, 총 7 종으로 분류한 뒤, 입력 문자를 인식 대상 문자의 수와 자소 복잡도에 따라 하나 또는 두 개의 인식 단위로 구분하여 인식한다. 각 HRU는 낱자에서 추출한 방향각 특징을 입력으로 사용하는 다층 신경망 인식기를 이용하여 인식한다. 다음으로, 각 다층 신경망 인식기의 신뢰도를 조합하여 최종 인식 결과를 도출한다. 제안한 방법을 사용한 실험에서 98.99%의 인식률을 얻을 수 있었으며, 이는 기존 방법에 비해 15.83%의 오류가 감소한 것이다.

  • PDF

A Study on Classification into Hangeul and Hanja in Text Area of Printed Document (인쇄체 문서의 문자영역에서 한글과 한자의 구별에 관한 연구)

  • 심상원;이성범;남궁재찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.6
    • /
    • pp.802-814
    • /
    • 1993
  • This paper propose an algorithm for preprocessing of character recognition, which classify characters into Hangeul and Hanja. In this study, we use the 9 structural chacteristics of Hanja which isn't affected by deformation of size and style of characters and rates based on character size to classify characters. Firstly, we process the blocking to segment each characters. Secondly, on this segmented characters, we apply algorithm proposed in this paper to classify Hangeul and Hanja. Finally, we classify characters into Hangeul and Hanja, respectively. An experiment with 2350 Hangeul and 4888 Hanja printed Gothic and Mincho style of KS-C 5601 are carried out. We experiment on typeface sample book, newspapers, academic society's papers, magazines, textbooks and documents written out word processor to obtain the classifying rates of 98.8%, 92%, 96%, 98% and 98%, respectively.

  • PDF

A Study on Documentization of Printed Hangul Image with Multi-size and Multi-style (다양한 크기 및 활자체를 갖는 인쇄체 한글 영상의 문서화에 관한 연구)

  • 김장욱;김경숙;손영선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.295-298
    • /
    • 2001
  • 본 논문에서는 CCD카메라로 입력 받은 다중 크기 및 활자체로 구성된 한글문서의 화상 데이터를 편집기에서 수정 가능한 문자로 변환시키는 시스템을 구현하였다. 먼저 Dynamic 이 진화 처리 과정을 거친 화상을 흑백 화소의 누적분포에 따라 문자단위로 분할한 후, 다양한 크기로 분할된 문자를 표준패턴 크기로 표준화 시켰다. 한글을 자소 간 공백 위치의 특징에 따라서 6가지 유형으로 분류한 후, 퍼지 이론을 접목시킨 원형 패턴 벡터 알고리즘을 사용해서 표준벡터와 입력된 글자의 특징벡터를 비교하여 문자로 인식하게 하였다. 각 6가지 유형에서 서로 다른 자소로 결합된 문자들을 30개 선정하여 여러 가지 활자체 및 크기에 적용해 본 결과, 모두 문서화가 가능함을 알 수 있었다.

  • PDF

A Recognition Algorithm of Hangeul Alphabet Using 2-D Digital filtering (2차원 디지털 필터링에 의한 한글 자모의 인식 알고리즘)

  • O, Gil-Nam;Sin, Seong-Ho;Jin, Yong-Ok
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.3
    • /
    • pp.55-59
    • /
    • 1984
  • This paper describes a method of Hangout recognition using 2 - D digital filtering. The 170 patterns classified by the positions of the initial sound (consonant), middle sound (vowel) and terminal sound (consonant) of the 1,659 characters were established and models formed by using 2 - D digital filtering for each patterns were obtained. Based on these models we proposed an algorithm that can recognize KOREAN combinational characters by separating patterns from them with superpostion principles. As a result of simulation, 100% of recognition rate is obtained in the case of the print letter.

  • PDF

A Study on the Printed Korean and Chinese Character Recognition (인쇄체 한글 및 한자의 인식에 관한 연구)

  • 김정우;이세행
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1175-1184
    • /
    • 1992
  • A new classification method and recognition algorithms for printed Korean and Chinese character is studied for Korean text which contains both Korean and Chinese characters. The proposed method utilizes structural features of the vertical and horizontal vowel in Korean character. Korean characters are classified into 6 groups. Vowel and consonant are separated by means of different vowel extraction methods applied to each group. Time consuming thinning process is excluded. A modified crossing distance feature is measured to recognize extracted consonant. For Chinese character, an average of stroke crossing number is calculated on every characters, which allows the characters to be classified into several groups. A recognition process is then followed in terms of the stroke crossing number and the black dot rate of character. Classification between Korean and Chinese character was at the rate of 90.5%, and classification rate of Ming-style 2512 Korean characters was 90.0%. The recognition algorithm was applied on 1278 characters. The recognition rate was 92.2%. The densest class after classification of 4585 Chinese characters was found to contain only 124 characters, only 1/40 of total numbers. The recognition rate was 89.2%.

  • PDF

Phoneme Extraction from Freely Hand Written Han Gul (자유 필기체 한글에서의 자모 추출)

  • Oh, Weon-Geun;Shin, Young-Geon;Ahn, Young-Kyung
    • Annual Conference on Human and Language Technology
    • /
    • 1989.10a
    • /
    • pp.142-147
    • /
    • 1989
  • 필기체 문자는 인쇄체 문자와는 달리, 복잡한 변형이 따르므로, 인식 하는데 많은 문제점이 따른다. 그렇기 때문에 일반적인 필기체 인식에 있어서는 필기 자체에 대한 제한을 두어 변형을 적게한 문자를 인식 대상으로 삼고 있다. 이러한 문자는, 설정된 조건만 확실하게 만족한다면, 비교적 간단하게 인식 할 수 있다. 반면에, 자유 필기체 문자는, 제한 필기체 문자와는 달리 변형이 크기 때문에, 그 인식에는 많은 연구가 필요하다. 본 연구에서는, 자유 필기체 한글의 자모를 추출하는데 있어 두개의 parameter space method를 이용했다. 화상내에서의 혼합은, 기본적으로 5 개의 element ($\mid,\;\setminus,\;/,\;-,\;o$)로 구성되어 있고, 이 element를 정의하는데는 최소한 4 개의 parameter, 즉 element의 위치 [x, y], 크기 [1] 및 type [T] 등이 필요하다. 입력 화상에서 추출된 직선 및 원의 성분은 [x, y, l] 과 [x, y, T]의 2 개의 3-D parameter space 에 누적되고, parameter space 상에서의 병합 분할 과정을 거쳐, element 가 형성된다. 추출된 element 들은, parameter space 상에서의 방향성 및 상호 위치 관계에 의한 조합 형태로서, 미리 기술되어진 자모 모델과 비교되어 인식된다. 본 방법의 특정은, 문자의 크기에 무관하고, 해석방법에 의해서는, 끊어진 element나 불필요한 element 등의 왜곡된 element 들의 처리가 가능한 점, 4 차원 parameter space를 두개의 3 차원 parameter space로 분리, 처리시간과 기억용량의 절약을 기한점 등을 들 수 있다.

  • PDF