• Title/Summary/Keyword: 한글 문서 클러스터링

Search Result 15, Processing Time 0.02 seconds

An Analysis of the Hierarchical Agglomerative Clustering based on various Compound Noun Indexing Method (복합명사 분리 색인 방법이 문서 클러스터링에 미치는 영향 분석)

  • 양명석;최성필
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.697-699
    • /
    • 2002
  • 본 논문에서는 복합명사에 대한 색인 방법을 다각적으로 적용하여 계층적 결함 문서 클러스터링 시스템의 결과를 분석하고자 한다. 우선 한글 색인 엔진과 HAC(Hierarchical Agglumerative Clustering) 엔진에 대해서 설명하고 한글 색인엔진에서 제공되는 세가지 복합명사 분석 모드에 대해서 설명한다. 또한 구현된 클러스터링 엔진의 특징과 속도 향상을 위한 기법 등을 설명한다. 실험에서는 다양한 요소를 가지고 클러스터링된 문서 집합에 대한 분석 결과를 보인다. 실험 결과에 대한 분석에서 복합명사에 대한 색인 방법이 문서 클러스터링의 결과에 직접적인 영향을 준다는 것을 보여준다.

  • PDF

The Experimental Study on the Relationship between Hierarchical Agglomerative Clustering and Compound Nouns Indexing (계층적 결합형 문서 클러스터링 시스템과 복합명사 색인방법과의 연관관계 연구)

  • Cho Hyun-Yang;Choi Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.38 no.4
    • /
    • pp.179-192
    • /
    • 2004
  • In this paper, we present that the result of document clustering can change dramatically with respect to the different ways of indexing compound nouns. First of all, the automatic indexing engine specialized for Korean words analysis, which also serves as the backbone engine for automatic document clustering system, is introduced. Then, the details of hierarchical agglomerative clustering(HAC) method, one of the widely used clustering methodologies in these days, was illustrated. As the result of observing the experiments, carried out in the final part of this paper, it comes to the conclusion that the various modes of indexing compound nouns have an effect on the outcome of HAC.

A Comparative Study of Feature Selection Methods for Korean Web Documents Clustering (한글 웹 문서 클러스터링 성능향상을 위한 자질선정 기법 비교 연구)

  • Kim Young-Gi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.39 no.1
    • /
    • pp.45-58
    • /
    • 2005
  • This Paper is a comparative study of feature selection methods for Korean web documents clustering. First, we focused on how the term feature and the co-link of web documents affect clustering performance. We clustered web documents by native term feature, co-link and both, and compared the output results with the originally allocated category. And we selected term features for each category using $X^2$, Information Gain (IG), and Mutual Information (MI) from training documents, and applied these features to other experimental documents. In addition we suggested a new method named Max Feature Selection, which selects terms that have the maximum count for a category in each experimental document, and applied $X^2$ (or MI or IG) values to each term instead of term frequency of documents, and clustered them. In the results, $X^2$ shows a better performance than IG or MI, but the difference appears to be slight. But when we applied the Max Feature Selection Method, the clustering Performance improved notably. Max Feature Selection is a simple but effective means of feature space reduction and shows powerful performance for Korean web document clustering.

Topical Clustering Techniques of Twitter Documents Using Korean Wikipedia (한글 위키피디아를 이용한 트위터 문서의 주제별 클러스터링 기법)

  • Chang, Jae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.189-196
    • /
    • 2014
  • Recently, the need for retrieving documents is growing in SNS environment such as twitter. For supporting the twitter search, a clustering technique classifying the massively retrieved documents in terms of topics is required. However, due to the nature of twitter, there is a limit in applying previous simple techniques to clustering the twitter documents. To overcome such problem, we propose in this paper a new clustering technique suitable to twitter environment. In proposed method, we augment new terms to feature vectors representing the twitter documents, and recalculate the weights of features using Korean Wikipedia. In addition, we performed the experiments with Korean twitter documents, and proved the usability of proposed method through performance comparison with the previous techniques.

Clustering Method Using the Union Information of Term Frequency and Link in Hypertext (웹 문서의 단어정보와 링크정보 결합을 이용한 클러스터링 기법)

  • Lee, Won-Hee;Lee, Kyo-Woon;Park, Heum;Kim, Young-Ki;Kwon, Hyuck-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.101-107
    • /
    • 2003
  • 최근의 웹 문서는 텍스트 위주의 구성이 아닌 이미지, 사운드, 동영상 등의 다양한 타입으로 구성되는 추세이다. 이에 따라 단순히 웹 문서 내의 단어 정보추출 만으로는 좋은 성능의 클러스터링을 기대하기 어렵다. 본 논문은 전통적인 문서 클러스터링 기법인 단어기반 클러스터링 기법의 취약점을 제시하고, 웹 문서간의 링크구조정보 중 동시인용 정보를 이용하여 웹 문서 클러스터링 성능향상의 가능성을 보이고자 한다. 실험에서는 네이버디렉토리 중 '자연과학' 범주에 포함된 문서를 대상으로 위의 두 가지 방식과 이 두 가지를 혼합한 단어-링크 혼합 클러스터링을 통해 기존의 방식보다 더 낳은 성능을 얻을 수 있었다.

  • PDF

Sentence Interaction-based Document Similarity Models for News Clustering (뉴스 클러스터링을 위한 문장 간 상호 작용 기반 문서 쌍 유사도 측정 모델들)

  • Choi, Seonghwan;Son, Donghyun;Lee, Hochang
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.401-407
    • /
    • 2020
  • 뉴스 클러스터링에서 두 문서 간의 유사도는 클러스터의 특성을 결정하는 중요한 부분 중 하나이다. 전통적인 단어 기반 접근 방법인 TF-IDF 벡터 유사도는 문서 간의 의미적인 유사도를 반영하지 못하고, 기존 딥러닝 기반 접근 방법인 시퀀스 유사도 측정 모델은 문서 단위에서 나타나는 긴 문맥을 반영하지 못하는 문제점을 가지고 있다. 이 논문에서 우리는 뉴스 클러스터링에 적합한 문서 쌍 유사도 모델을 구성하기 위하여 문서 쌍에서 생성되는 다수의 문장 표현들 간의 유사도 정보를 종합하여 전체 문서 쌍의 유사도를 측정하는 네 가지 유사도 모델을 제안하였다. 이 접근 방법들은 하나의 벡터로 전체 문서 표현을 압축하는 HAN (hierarchical attention network)와 같은 접근 방법에 비해 두 문서에서 나타나는 문장들 간의 직접적인 유사도를 통해서 전체 문서 쌍의 유사도를 추정한다. 그리고 기존 접근 방법들인 SVM과 HAN과 제안하는 네 가지 유사도 모델을 통해서 두 문서 쌍 간의 유사도 측정 실험을 하였고, 두 가지 접근 방법에서 기존 접근 방법들보다 높은 성능이 나타나는 것을 확인할 수 있었고, 그래프 기반 접근 방법과 유사한 성능을 보이지만 더 효율적으로 문서 유사도를 측정하는 것을 확인하였다.

  • PDF

Automatic Naming of Document Clusters by Using their Hierarchical Structure (계층구조를 이용한 문서 클러스터 제목의 자동생성)

  • Kim, Tae-Hyun;Myaeng, Sung-Hyon
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.163-170
    • /
    • 2001
  • 웹에서 정보를 찾고자 하는 사용자들을 돕기 위해서는 조직화된 방법으로 검색 결과들을 제시하는 것이 바람직하다. 이러한 목적을 위해, 문서 클러스터링 기법들이 제안되었다. 문서 클러스터링은 사용자들이 관심의 대상이 되는 문서들을 더욱 쉽게 배치할 수 있게 하고, 검색된 문서집합에 대한 개관을 손쉽게 얻을 수 있게 한다. 클러스터링 결과로 주어지는 각 클러스터의 주제를 사용자들이 빠르게 파악할 수 있게 하려면 클러스터 제목을 표현하는 문제가 중요시 된다. 본 연구에서는, 웹 디렉토리의 계층적 구조를 사용하여 자동으로 클러스터 제목을 생성하는 방법을 제안한다. 이 방법은 대상이 되는 클러스터에 있는 문서들의 내용과 부합되는 계층상의 노드를 계층구조 상에서 찾아내어, 계층구조의 루트로부터 그 노드에 이르는 경로명을 클러스터의 제목으로 사용자에게 제시하도록 한다. 본 연구에서 제안한 모델은 '야후' 디렉토리를 사용하여 실험되었다. 실험 결과, 실험대상 클러스터의 본래 제목과 정확하게 일치하는 제목을 찾을 수 있는 경우의 정확률이 57.5% 의미적으로 본래 제목에 부합되는 제목을 찾을 수 있는 경우의 정확률이 대략 90%에 이른다는 것을 알 수 있었다.

  • PDF

Comparison of Document Clustering algorithm using Genetic Algorithms by Individual Structures (개체 구조에 따른 유전자 알고리즘 기반의 문서 클러스터링 성능 비교)

  • Choi, Lim-Cheon;Song, Wei;Park, Soon-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.3
    • /
    • pp.47-56
    • /
    • 2011
  • To apply Genetic algorithm toward document clustering, appropriate individual structure is required. Document clustering with the genetic algorithms (DCGA) uses the centroid vector type individual structure. New document clustering with the genetic algorithm (NDAGA) uses document allocated individual structure. In this paper, to find more suitable object structure and process for the document clustering, calculation, amount of calculation, run-time, and performance difference between the two methods were analyzed. In this paper, we have performed various experiments using both DCGA and NDCGA. Result of the experiment shows that compared to DCGA, NDCGA provided 15% faster execution time, about 5~10% better performance. This proves that the document allocated structure is more fitted than the centroid vector type structure when it comes to document clustering. In addition, NDCGA showed 15~25% better performance than the traditional clustering algorithms (K-means, Group Average).

Document Embedding and Image Content Analysis for Improving News Clustering System (뉴스 클러스터링 개선을 위한 문서 임베딩 및 이미지 분석 자질의 활용)

  • Kim, Siyeon;Kim, Sang-Bum
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.104-108
    • /
    • 2015
  • 많은 양의 뉴스가 생성됨에 따라 이를 효과적으로 정리하는 기법이 최근 활발히 연구되어왔다. 그 중 뉴스클러스터링은 두 뉴스가 동일사건을 다루는지를 판정하는 분류기의 성능에 의존적인데, 대부분의 경우 BoW(Bag-of-Words)기반 벡터유사도를 사용하고 있다. 본 논문에서는 BoW기반의 벡터유사도 뿐 아니라 두 문서에 포함된 사진들의 유사성 및 주제의 관련성을 측정, 이를 분류기의 자질로 추가하여 두 뉴스가 동일사건을 다루는지 판정하는 분류기의 성능을 개선하는 방법을 제안한다. 사진들의 유사성 및 주제의 관련성은 최근 각광을 받는 딥러닝기반 CNN과 신경망기반 문서임베딩을 통해 측정하였다. 실험결과 기존의 BoW기반 벡터유사도에 의한 분류기의 성능에 비해 제안하는 두 자질을 사용하였을 경우 3.4%의 성능 향상을 보여주었다.

  • PDF

Construction of Answer Sets using Automatic Categorization (자동분류를 이용한 정답문서집합 구축)

  • Chang, Moon-Soo;Oh, Hyo-Jung;Jang, Myung-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.494-499
    • /
    • 2001
  • 최근의 인터넷 정보검색은 방대한 정보의 수용과 지능적이고 개인화된 검색 결과 요구라는 사뭇 상반된 요구를 만족시켜야 한다. 기계적으로 키워드를 매칭시켜 나오는 문서를 사용자에게 맡기는 식의 검색은 더 이상 환영을 받지 못한다. 우리는 이러한 추세에 맞추어 의미기반 정보검색에 필요한 개념망과 정답문서집합으로 구성된 지식베이스를 제안한 바 있다. 본 논문에서는 방대한 구조의 개념망과 연결되는 정답문서집합을 유동적인 인터넷 환경에 적용하기 위해 자동으로 구축하는 시스템을 제시한다. 자동구축은 문서분류(document categorization) 기술을 활용하여 개념어에 문서를 할당하는 방법과 속성에 문서를 할당하는 방법으로 나누어 이루어진다. 제시한 방법은 실험을 통하여 기본적인 속성 할당에는 상당한 효과가 있는 것으로 판단되었고, 일부 미할당 문서에 대해서는 클러스터링과 같은 다른 알고리즘이 필요하다.

  • PDF