• Title/Summary/Keyword: 한국-중국 북부지역

Search Result 71, Processing Time 0.025 seconds

A New Early-Maturing, High Quality Rice Cultivar 'Joami' (조생 고품질 벼 신품종 '조아미')

  • Kang, Jong-Rae;Nam, Min-Hee;Kwak, Do-Yeon;Jung, Jin-Il;Kim, Dae-Sik;Kim, Jeong-Il;Song, You-Chun;Yeo, Un-Sang;Lee, Jong-Hee;Park, No-Bong;Park, Dong-Soo;Yi, Gi-Hwan;Cho, Jun-Hyeon;Kim, Chun-Song;Lee, Ji-Yoon;Jeon, Myeong-Gee;Shin, Mun-Sik;Oh, Byeong-Geon;Kang, Hang-Won;Ahn, Jin-Gon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.615-622
    • /
    • 2010
  • A new rice cultivar, 'Joami', was developed by the rice breeding team of Sangju Substation, National Institute of Crop Science (NICS), Rural Development Administration. It was selected by a bulk and pedigree methods from a cross-combination among 'Sambaegbyeo', 'Yukara', and 'Tonggae112'. A promising line of YR20557-1-1-3-B-3 was designated as 'Sangju 36' in 2006. Local adaptability test of 'Sangju 36' was conducted at ten sites throughout the Korean peninsula during three years from 2006 to 2008. 'Sangju 36', thereafter, was registered as 'Joami' in 2008. The cultivar headed on July 30 in the test of local adaptability. Endosperm of 'Joami' is translucent with clear chalkiness and has 5.4% higher head rice ratio than that of 'Odaebyeo'. The yield potential of 'Joami' in milled rice is about 5.40 MT/ha under ordinary fertilizer level of local adaptability test, which was 6% higher than that of 'Odaebyeo'. In an alpine area of Korea, the rice variety needs a cold tolerance and a resistance to blast disease. 'Joami' showed a tolerance reaction at Chuncheon cold tolerance screening nursery and exhibited resistance reaction to blast disease in nation-wide disease screening nursery. Therefore, 'Joami' would be well adaptable to mid-mountainous area at central and southern part of Korean peninsula.

The Characteristic of Mangerite and Gabbro in the Odaesan Area and its Meaning to the Triassic Tectonics of Korean Peninsula (오대산 지역에 나타나는 맨거라이트와 반려암의 특징과 트라이아스기 한반도 지체구조 해석에 대한 의미)

  • Kim, Tae-Sung;Oh, Chang-Whan;Kim, Jeong-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.77-98
    • /
    • 2011
  • The igneous complex consisting of mangerite and gabbro in the Odaesan area, the eastem part of the Gyeonggi Massif, South Korea, intruded early Paleo-proterozoic migmatitic gneiss. The mangerite is composed of orthopyroxene, clinopyroxene, amphibole, biotite, plagioclase, pethitic K-feldspar, quartz. The gabbro has similar mineral assemblage but gabbro has minor amounts of amphibole and no perthitic K-feldspar. The gabbro occurs as enclave and irregular shaped body within the mangerite, and the boundary between the mangerite and gabbro is irregular. Leucocratic lenses with perthitic K-feldspar are included in the gabbro enclaves. These textures represent mixing of two different magmas in liquid state. SHRIMP U-Pb zircon age dating gave $234{\pm}1.2$ Ma and $231{\pm}1.3$ Ma for mangerite and gabbro, respectively. These ages are similar with the intrusion ages of post collision granitoids in the Hongseong (226~233 Ma) and Yangpyeong (227~231 Ma) areas in the Gyeonggi Massif. The mangerite and gabbro are high Ba-Sr granites, shoshonitic and formed in post collision tectonic setting. These rocks also show the characters of subduction-related igneous rock such as enrichment in LREE, LILE and negative Nb-Ta-P-Ti anomalies. These data represent that the mangerite and gabbro formed in the post collision tectonic setting by the partial melting of an enriched lithospheric mantle during subduction which occurred before collision. The heat for the partial melting was supplied by asthenospheric upwelling through the gab between continental and oceanic slabs formed by slab break-off after continental collision. The distribution of post-collisional igneous rocks (ca. 230 Ma) in the Gyeonggi Massif including Odaesan mangerite and gabbro strongly suggests that the tectonic boundary between the North and South China blocks in Korean peninsula passes the Hongseong area and futher exteneds into the area between the Yangpyeong-Odaesan line and Ogcheon metamorphic belt.

Current Status and Necessity of Separation Technology to Secure Vanadium Mineral Resources (바나듐 광물자원 확보를 위한 선별 기술 현황 및 필요성)

  • Jeon, Hoseok;Han, Yosep;Baek, Sangho;Davaadorj, Tsogchuluun;Go, Byunghun;Jeong, Dohyun;Chu, Yeoni;Kim, Seongmin
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.3-11
    • /
    • 2022
  • Owing to the global development of high-strength alloys and renewable energy industries, the demand for vanadium, a key raw material in these industries, is expected to increase. Until now, vanadium has been recovered as a by-product of the industry, but interest in its direct recovery from minerals has increasing with its significantly increasing demand. In particular, the recovery of vanadium from stone coal ore and vanadium titano-magnetite (VTM) containing vanadium has been actively researched in China, which has the largest reserves and production of vanadium in the world. In Korea, a large amount of VTM also occurs in the northern part of Gyeonggi-do, and fundamental research and technical development is being conducted to recover vanadium. It is necessary to understand the current status of the separation technology used worldwide to satisfy the demand for metals such as vanadium, which currently depends on imports.

Characteristics of Petroleum Geology of the Marine Basins in North Korea and Mutual Cooperative Plans for MT (Marine Technology) (북한 해양분지의 석유지질학적인 특징과 남북한 해양과학기술 협력 방안)

  • Huh, Sik;Yoo, Hai-Soo;Kwon, Suk-Jae;Oh, Wee-Yeong;Pae, Seong-Hwan
    • The Korean Journal of Petroleum Geology
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 2006
  • The possibility of oil reserve has been conformed because the oil has been produced by 450 barrel per day in the West Korea Bay basin of the North Korea. There is also possibility of giant oil reserve since it is geographically close to one of the biggest oil fields of Bohai Basin, China. Based on the on-going oil exploration and the present condition of investment, the areas of ongoing oil exploration are three: West Korea Bay B&C prospect explored by Swedish Taurus, the north of West Korea Bay and Anju basin explored by Canadian SOCO, and East Korea Bay explored by Australian Beach Petroleum. However, there is little or no possibility of oil reserve in the rest sea areas of three. Even though oil reserves were discovered in the some parts of land areas such as Kilju and Myungcheon, it was presumed to have no economical efficiency. Geology in West Korea Bay off the North Korea is similar to that in Bohai Bay off China. The basement consists of thick carbonate rock of the Late Proterozoic and Early Paleozoic overlain by Mesozoic ($6,000{\sim}10,000\;m$) and Cenozoic ($4,000{\sim}5,000\;m$) units. Source rocks are Jurassic black shale (3,000 m or more), Cretaceous black shale ($1,000{\sim}2,000\;m$), and pre-Mesozoic carbonates (several thousand meters). Reservoir rocks are Mesozoic-Cenozoic sandstone with high porosity and pre-Mesozoic fractured carbonate rocks. Petroleum raps are of the anticline, fault sealed, buried hill, and stratigraphic types. It absolutely needs to take up a positive attitude, the activation of ocean science and technology exchange, and the joint research and development of modern MT (Marine Technology) considering the state of establishing new international ocean order forcing on building up 200 nautical mile EEZ (exclusive economic zone) among coastal nations. Both South and North Koreas should extend the ocean jurisdiction and contiguity, and MT development dealing with the same sea areas. It is more urgent problem to find a way to have the North Korea participated in, and then to develop ocean management and ocean industry individually.

  • PDF

Chemical Composition and Lead Isotope Ratio of Glass Beads Excavated from Eunpyeong Newtown Site (은평 뉴타운 유적 출토 유리구슬의 성분조성과 납동위원소비)

  • Kang, Hyung-Tae;Cho, Nam-Chul;Han, Min-Su;Kim, Woo-Hyun;Hong, Ji-Youn
    • Journal of Conservation Science
    • /
    • v.25 no.3
    • /
    • pp.335-345
    • /
    • 2009
  • This paper presents investigations on 60 glass beads excavated from floorless tombs of Eunpyeong Newtown site to figure out composition and lead isotope ratio by SEM-EDS and TIMS, which show the difference between their compositions and Pb provenance of lead glass. The results of the composition analysis are that excavated glass are mainly divided into Potash glass($K_2O$-CaO-$SiO_2$) and Potash-lead glass($K_2O$-PbO-$SiO_2$) and the samples excavated from III-3 floorless tombs No.1005 are presumed not glass but Quartz. The transparent 9 lead glasses excavated from II-3 floorless tomb No.101 and III-3 floorless tomb No.908 seem to be manufactured by the same raw material at same site because the concentration of their compositions are well accorded with each other and deviations of them are very limited. As a result of principal component analysis(PCA), glass beads excavated are largely assort to two groups, Potash glass and Potash lead glass as well. That is, glass beads excavated from Eunpyeoung Newtown sites are quite different two types of main composition. In addition, the results of Pb provenance analysis used in lead glass confirm that most lead glass are significantly correlated with galena of northern China.

  • PDF

The Interdecadal Variation of Relationship between Indian Ocean Sea Surface Temperature and East Asian Summer Monsoon (인도양 해수면 온도와 동아시아 여름 몬순의 관계에 대한 장주기 변동성)

  • Kim, Won-Mo;Jhun, Jong-Ghap;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.45-59
    • /
    • 2008
  • This study aims to analyze the interdecadal variation of relationship between Indian Ocean sea surface temperature (SST) and East Asian summer monsoon (EASM) during the period of 1948-2005. In the pre-period, which is from 1948 to 1975, the relationship between Indian Ocean SST and East Asian summer rainfall anomaly (EASRA) is very weak. However, in the post-period, which is trom 1980 to 2005, Indian Ocean SST is significantly positively correlated with EASRA. The equatorial Indian Ocean SST has a significantly positive correlation with EASM in spring, while Indian Ocean SST near the bay of Bengal has a positive relationship in summer for the post-period. Also the interdecadal variation of the correlation between Indian Ocean SST and EASRA is significant, but that between EASRA and the El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) is not. Atmospheric general circulation model (AGCM) test results show the pattern of increased precipitation in the zonal belt region including South Korea and Japan and the pattern of decreased precipitation in the northeastern part of Asia, which are similar to the real climate. The increase of the precipitation in August from the model run is also similar to the real climate variation. Model results indicate that the Indian Ocean SST warming could intensify the convection over the vicinity of the Philippines and the Bay of Bengal, which forces to move northward the convection center. This warming strengthens the EASM and weakens the WNPM.

21st Century ROK's Art History Research on Central Eurasia (21세기 한국의 중앙유라시아 미술사 연구)

  • Lim, Young-ae
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.3
    • /
    • pp.186-203
    • /
    • 2015
  • This article attempts to examine both the outcome and future task of the art history research on Central Eurasia, better known under the name of "Silk Road". The term Central Eurasia encompasses Xinjiang Uygur, Tibet, Mongolia, former Soviet Republics, the northwest region of India, Iran and Turkey. The article analyzes the 30-year history of the region's art history research and further presents a desirable direction that the study should move towards. Though short in its research period, the ROK's art history study on Central Eurasia has shown eye-catching achievement in several areas such as the northwest region of India and the Xinjiang Uygur, Dunhwang of China. Two factors allowed for this accomplishment. First was the actual improvement of the work environment, where the scholars were finally able to travel to Central Eurasia and explore the historic sites for themselves since 1990. More important was the 'arena of study' for the next-generation scholars made possible by institutions like The Korean Association for Central Asian Studies and the Center for Central Eurasian Studies. Slowly but consistently, the two academic societies induced scholars' attention towards the field and fostered new experts. Circumstances changed, marking 2012 as the starting point. International academic forums held by the government branches surged in number. The intention behind it was to link the ROK with the Silk Road and ultimately to obtain the "Eurasia initiative". As of now, the public has shown heightened interest in the issue. The academia is subsequently riding on this second "wave of interest" following the first wave in the 1980s. However, increased popularity comes with some negative consequences, and this art history research on Central Eurasia is no exception. There are criticisms regarding the objectivity of recent academic forums. Some argue that the aim of the forums are sternly set most of the times, prohibiting the presenters to voice their own perspectives. Still, this heated attention will definitely play its role as a stepping stone for further development. The academia should commit to fostering rising researchers who will systemically and professionally study the field. This is imperative in order for the Korean culture to successfully communicate with the world and take itself to a new level. Without completing this task, the ROK's art history research on Central Eurasia is likely to remain idle.

GENERAL STRATIGRAPHY OF KOREA (한반도층서개요(韓半島層序槪要))

  • Chang, Ki Hong
    • Economic and Environmental Geology
    • /
    • v.8 no.2
    • /
    • pp.73-87
    • /
    • 1975
  • Regional unconformities have been used as boundaries of major stratigraphic units in Korea. The term "synthem" has already been propsed for formal unconformity-bounded stratigraphic units of maximum magnitude (ISSC, 1974). The unconformity-based classification of the strata in the cratonic area in Korea comprises in ascending order the Kyerim, $Sangw{\check{o}}n$, $Jos{\check{o}}n$, $Py{\check{o}}ngan$, Daedong, and $Ky{\check{o}}ngsang$ Synthems, and the Cenozoic Erathem. The unconformites separating them from each other are either orogenic or epeirogenic (and vertical tectonic). The sub-$Sangw{\check{o}}n$ unconformity is a non-conformity above the basement complex in Korea. The unconformities between the $Sangw{\check{o}}n$, $Jos{\check{o}}n$, and $Py{\check{o}}ngan$ Synthems are disconformities denoting late Precambrian and Paleozoic crustal quiescence in Korea. The unconformities between the $Py{\check{o}}ngan$, Daedong, and $Ky{\check{o}}ngsang$ Synthems are angular unconformities representing Mesozoic orogenies. The bounding unconformities of the $Ky{\check{o}}ngsang$ Synthem involve non-conformable parts overlying the Jurassic and late Cretaceous granitic rocks.

  • PDF

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.

Territorial Expansion the King Võ (Võ Vương, 1738-1765) in the Mekong Delta: Variation of Tám Thực Chi Kế (strategy of silkworm nibbling) and Dĩ Man Công Man (to strike barbarians by barbarians) in the Way to Build a New World Order (무왕(武王, 1738-1765) 시기 메콩 델타에서의 영토 확장 추이: 제국으로 가는 길, '잠식지계(蠶食之計)'와 '이만공만(以蠻攻蠻)'의 변주)

  • CHOI, Byung Wook
    • The Southeast Asian review
    • /
    • v.27 no.2
    • /
    • pp.37-76
    • /
    • 2017
  • $Nguy{\tilde{\hat{e}}}n$ Cư Trinh has two faces in the history of territorial expansion of Vietnam into the Mekong delta. One is his heroic contribution to the $Nguy{\tilde{\hat{e}}}n$ family gaining control over the large part of the Mekong delta. The other is his role to make the eyes of readers of Vietnamese history be fixed only to the present territory of Vietnam. To the readers, $Nguy{\tilde{\hat{e}}}n$ Cư Trinh's achievement of territorial expansion was the final stage of the nam $ti{\acute{\hat{e}}n$ of Vietnam. In fact, however, his achievement was partial. This study pays attention to the King $V{\tilde{o}}$ instead of $Nguy{\tilde{\hat{e}}}n$ Cư Trinh in the history of the territorial expansion in the Mekong delta. King's goal was more ambitious. And the ambition was propelled by his dream to build a new world, and its order, in which his new capital, $Ph{\acute{u}}$ $Xu{\hat{a}}n$ was to be the center with his status as an emperor. To improve my assertion, three elements were examined in this article. First is the nature of $V{\tilde{o}}$ Vương's new kingship. Second is the preparation and the background of the military operation in the Mekong Delta. The nature of the new territory is the third element of the discussion. In 1744, six years after this ascending to the throne, $V{\tilde{o}}$ Vương declared he was a king. Author points out this event as the departure of the southern kingdom from the traditional dynasties based on the Red River delta. Besides, the government system, northern custom and way of dressings were abandoned and new southern modes were adopted. $V{\tilde{o}}$ Vương had enough tributary kingdoms such as Cambodia, Champa, Thủy $X{\tilde{a}}$, Hoả $X{\tilde{a}}$, Vạn Tượng, and Nam Chưởng. Compared with the $L{\hat{e}}$ empire, the number of the tributary kingdoms was higher and the number was equivalent to that of the Đại Nam empire of the 19th century. In reality, author claims, the King $V{\tilde{o}}^{\prime}s$ real intention was to become an emperor. Though he failed in using the title of emperor, he distinguished himself by claiming himself as the Heaven King, $Thi{\hat{e}}n$ Vương. Cambodian king's attack on the thousands of Cham ethnics in Cambodian territory was an enough reason to the King $V{\tilde{o}}^{\prime}s$ military intervention. He considered these Cham men and women as his amicable subjects, and he saw them a branch of the Cham communities in his realm. He declared war against Cambodia in 1750. At the same time he sent a lengthy letter to the Siamese king claiming that the Cambodia was his exclusive tributary kingdom. Before he launched a fatal strike on the Mekong delta which had been the southern part of Cambodia, $V{\tilde{o}}$ Vương renovated his capital $Ph{\acute{u}}$ $Xu{\hat{a}}n$ to the level of the new center of power equivalent to that of empire for his sake. Inflation, famine, economic distortion were also the features of this time. But this study pays attention more to the active policy of the King $V{\tilde{o}}$ as an empire builder than to the economic situation that has been told as the main reason for King $V{\tilde{o}}^{\prime}s$ annexation of the large part of the Mekong delta. From the year of 1754, by the initiative of $Nguy{\tilde{\hat{e}}}n$ Cư Trinh, almost whole region of the Mekong delta within the current border line was incorporated into the territory of $V{\tilde{o}}$ Vương within three years, though the intention of the king was to extend his land to the right side of the Mekong Basin beyond the current border such as Kampong Cham, Prey Vieng, and Svai Rieng. The main reason was $V{\tilde{o}}$ Vương's need to expand his territory to be matched with that of his potential empire with the large number of the tributary kingdoms. King $V{\tilde{o}}^{\prime}s$ strategy was the variation of 'silkworm nibbling' and 'to strike barbarians by barbarians.' He ate the land of Lower Cambodia, the region of the Mekong delta step by step as silkworm nibbles mulberry leave(general meaning of $t{\acute{a}}m$ thực), but his final goal was to eat all(another meaning of $t{\acute{a}}m$ thực) the part of the Mekong delta including the three provinces of Cambodia mentioned above. He used Cham to strike Cambodian in the process of getting land from Long An area to $Ch{\hat{a}}u$ Đốc. This is a faithful application of the Dĩ Man $C{\hat{o}}ng$ Man (to strike barbarians by barbarians). In addition he used Chinese refugees led by the Mạc family or their quasi kingdom to gain land in the region of $H{\grave{a}}$ $Ti{\hat{e}}n$ and its environs from the hand of Cambodian king. This is another application of Dĩ Man $C{\hat{o}}ng$ Man. In sum, author claims a new way of looking at the origin of the imperial world order which emerged during the first half of the 19th century. It was not the result of the long history of Đại Việt empires based on the Red River delta, but the succession of the King $V{\tilde{o}}^{\prime}s$ new world based on $Ph{\acute{u}}$ $Xu{\hat{a}}n$. The same ways of Dĩ Man $C{\hat{o}}ng$ Man and $T{\acute{a}}m$ Thực Chi $K{\acute{\hat{e}}}$ were still used by $V{\tilde{o}}^{\prime}s$ descendents. His grandson Gia Long used man such as Thai, Khmer, Lao, Chinese, and European to win another man the '$T{\hat{a}}y$ Sơn bandits' that included many of Chinese pirates, Cham, and other mountain peoples. His great grand son Minh Mạng constructed a splendid empire. At the same time, however, Minh Mạng kept expanding the size of his empire by eating all the part of Cambodia and Cham territories.