• Title/Summary/Keyword: 한국 수학

Search Result 10,180, Processing Time 0.033 seconds

Characteristics of Measurement Errors due to Reflective Sheet Targets - Surveying for Sejong VLBI IVP Estimation (반사 타겟의 관측 오차 특성 분석 - 세종 VLBI IVP 결합 측량)

  • Hong, Chang-Ki;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.325-332
    • /
    • 2022
  • Determination of VLBI IVP (Very Long Baseline Interferometry Invariant Point) position with high accuracy is required to compute local tie vectors between the space geodetic techniques. In general, reflective targets are attached on VLBI antenna and slant distances, horizontal and vertical angles are measured from the pillars. Then, adjustment computation is performed by using the mathematical model which connects measurements and unknown parameters. This indicates that the accuracy of the estimated solutions is affected by the accuracy of the measurements. One of issues in local tie surveying, however, is that the reflective targets are not in favorable condition, that is, the reflective sheet target cannot be perfectly aligned to the instrument perpendicularly. Deviation from the line of sight of an instrument may cause different type of measurement errors. This inherent limitation may lead to incorrect stochastic modeling for the measurements in adjustment computation procedures. In this study, error characteristics by measurement types and pillars are analyzed, respectively. The analysis on the studentized residuals is performed after adjustment computation. The normality of the residuals is tested and then equal variance test between the measurement types are performed. The results show that there are differences in variance according to the measurement types. Differences in variance between distances and angle measurements are observed when F-test is performed for the measurements from each pillar. Therefore, more detailed stochastic modeling is required for optimal solutions, especially in local tie survey.

A DEVS-based Modeling & Simulation Methodology of Enabling Node Mobility for Ad Hoc Network (노드 이동성을 고려한 애드 혹 네트워크의 이산 사건 시스템 기반 모델링 및 시뮬레이션 방법론)

  • Song, Sang-Bok;Lee, Kyou-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.127-136
    • /
    • 2009
  • Modeling and Simulation, especially in mobile ad hoc network(MANET), are the most effective way to analyze performance or optimize system parameters without establishing real network environment. Focusing mainly on overall network behaviors in MANET concerns dynamics of network transport operations, which can efficiently be characterized with event based system states rather than execution details of protocols. We thus consider the network as a discrete event system to analyze dynamics of network transport performance. Zeigler's set-theoretic DEVS(Discrete Event Systems Specification) formalism can support specification of a discrete event system in hierarchical, modular manner. The DEVSim++ simulation environment can not only provide a rigorous modeling methodology based on the DEVS formalism but also support modelers to develop discrete event models using the hierarchical composition methodology in object-orientation. This environment however hardly supports to specify connection paths of network nodes, which are continuously altered due to mobility of nodes. This paper proposes a DEVS-based modeling and simulation methodology of enabling node mobility, and develops DEVS models for the mobile ad hoc network. We also simulate developed models with the DEVSim++ engine to verify the proposal.

An Analysis of the Characteristics of Teachers' Adaptive Practices in Science Classes (과학 수업에서 교사의 적응적 실행의 특징 분석)

  • Heekyong Kim;Bongwoo Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.4
    • /
    • pp.403-414
    • /
    • 2023
  • In this study, we examined the adaptive practices of science teachers in their classrooms and their perspectives on the distinguishing features of these practices within science subjects. Our analysis comprised 339 cases from 128 middle and high school science teachers nationwide, and 199 cases on the characteristics of adaptive practices in science disciplines. The primary findings were as follows: First, the most significant characteristic of adaptive practice in science disciplines pertained to experimental procedures. Within the 'suggestion of additional materials/activities' category, the most frequently cited adaptive practice, teachers incorporated demonstrations to either facilitate student comprehension or enhance motivation. Additionally, 'experimental equipment manipulation or presentation of inquiry skills' emerged as the second most common adaptive practice related to experiments. Notably, over 50% of teacher responses regarding the characteristics of adaptive practices in science pertained to experiment guidance. Second, many adaptive practices involving difficulties experienced by students in learning situations were presented, particularly in areas such as numeracy and literacy. Many cases were related to the basic ability of mathematics used as a tool in science learning and understanding scientific terms in Chinese characters. Third, beyond 'experiment guidance', the characteristic adaptive practices of science subjects were related to 'connections between scientific theory and the real world', 'misconception guidance in science', 'cultivation of scientific thinking', and 'convergence approaches'. Fourth, the cases of adaptive practice presented by the science teachers differed by school level and major; therefore, it is necessary to consider school level or major in future research related to adaptive practice. Fifth, most of the adaptive action items with a small number of cases were adaptive actions executed from a macroscopic perspective, so it is necessary to pay attention to related professionalism. Finally, based on the results of this study, the implications for science education were discussed.

Drawing up class module elements of originality and convergence and suggesting class modules by combining middle school physical education and STEAM (중학교 체육과 STEAM 융합을 통한 창의·융합 수업 모듈 요소 도출 및 수업 모듈 제시)

  • Hong, Hee-Jung;Lim, Hyun-Joo
    • Journal of Wellness
    • /
    • v.14 no.2
    • /
    • pp.207-223
    • /
    • 2019
  • The purpose This study aimed at proposing class module elements for creativity and convergence and class models for creativity and convergence by integrating content elements by physical activity field(health, challenge, competition, ) for physical education and STEAM. For this, literature review, focus group interview(FGI) and discussions with experts were conducted, and the following study results have been drawn up: First, concerning the class module elements for creativity and convergence, total 11 class module elements in the health field were suggested including detecting risks by posture analysis and analyzing and designing amount of physical activity. Second, total 7 module elements in the challenge field were deduced such as anticipation of obstacles to target achievement and modeling of effective exercise. There were 17 convergence elements in the competition field including game record analysis and creation of game data storage application. Third, total 9 creativity and convergence module elements in the field include modeling of technology improvement for motion and symbolization for motion records. In addition, class modules related to convergence with engineering in the health field, convergence with technology in the challenge field, convergence with art in the competition field and convergence with art and mathematical symbols were proposed.

Centrifuge Model Tests on Trafficability of Very Soft Ground Treated with Geotextile and Sand Mat (토목섬유와 모래로 처리된 초연약지반의 장비주행성에 대한 원심모형실험)

  • Jun, Sang-Hyun;Lee, Jong-Ho;Yoo, Nam-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.13-23
    • /
    • 2010
  • In this study, centrifuge model tests with 50 g gravitational condition were performed to evaluate the bearing capacity of very soft ground, improved by spreading geotextile and sand on the surface of ground, for the heavy machinery to be able to access. For undrained shear strength of ground model, prepared with the clay sampled from the field, being in the range of 3.1~11.7 kPa, bearing capacity tests were performed with the model footing and the loading system built to simulate the heavy machinery on the ground model treated with geotextile and sand. Test results were compared with theoretically and numerically evaluated ones. Test results about load-settlement curves showed that the bearing capacity increases with the increase of the undrained shear strength of ground. Punching shear or local shear failure was also observed. For a relatively low undrained shear strength of ground, settlement behavior is found to be crucial to evaluating the trafficability of machinery whereas bearing capacity becomes a dominant factor with the increase of undrained shear strength of ground. The method for assessing the bearing capacity of the ground related to trafficability of machinery is presented by acquiring the regression relationship between the contact pressure of machinery and settlements using load-settlement curves with the change of the undrained shear strength. Furthermore, results of numerical analyses about load-settlement relation are in relatively good agreement with those of centrifuge model test.

Perception of Science Core Competencies of High School Students who Participated in the 'Skills' based Inquiry Class of the 2015 Revised Science Curriculum (2015 개정 과학과 교육과정의 '기능' 기반 탐구 수업에 참여한 고등학생의 과학과 핵심역량에 대한 인식)

  • Sangyou Park;Wonho Choi
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.2
    • /
    • pp.87-98
    • /
    • 2023
  • In this study, we investigated the change in science core competency perception of high school students and the reason for change when science inquiry classes were conducted using eight 'skills' of the 2015 revised science curriculum. Fifteen first-year high school students in Jeollanam-do participated in the science inquiry class of this study, and the class was conducted for 20 hours (5 hours a day for four days). The inquiry activities used in the class consisted of four activity stages (research problems, research methods, research results, and conclusions) and each stage was constructed to include at least one 'skill (Problem Recognition, Model Development and Use, Inquiry Design and Performance, Data Collection, Analysis and Interpretation, Mathematical Thinking and Computer Application, Conclusion and Evaluation, Evidence-based Discussion and Demonstration, and Communication)'. As a result of the study, students' perception of the five science core competencies increased statistically significantly at the significance level of 0.01 through inquiry classes and more than 93% of students recognized that their science core competencies improved through the classes. However, since the class of this study was conducted for a small number of students, it is difficult to generalize the effect of the class, and so it is necessary to conduct a quantitative study for many students.

A Multi-Degree of Freedom Measurement System for Determining Geometric Errors in Miniaturized Machine Tool (소형공작기계의 기하학적 오차 평가를 위한 다자유도 측정시스템)

  • S. H., Kweon;Y., Liu;S. H., Yang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.638-643
    • /
    • 2004
  • 소형화된 기계가공시스템은 사용재료의 다양화와 에너지 및 공간의 감소와 같은 장점을 가지고 작고 정밀한 부품을 가공할 수 있는 시스템으로 주목받고 있다. 이러한 시스템이 비록 그 크기가 일반적인 가공시스템에 비해 작지만 정렬 및 조립공정, 기계요소의 불완정성에 의한 기하학적 오차는 여전히 존재한다. 기하학적 오차 평가는 기계시스템의 정밀도를 효과적으로 적은 비용으로 향상시킬 수 있는 오차보정기술을 적용할 수 있는 토대가 된다. 일반적으로, 3 축의 직선축으로 이루어진 공작기계는 21 개의 오차요소를 가진다. 레이져간섭계는 이러한 오차요소를 평가하는데 널리 사용되고 있지만 광학계를 정렬하고 설치하는 데 많은 어려움이 있으며 한번의 설치로 한 개의 오차요소만이 측정 가능하다. 또한, 소형공작기계의 경우, 그 크기로 인해 기존의 레이져 간섭계를 직접적으로 적용할 수 없다. 따라서, 본 연구에서는 소형공작기계를 포함한 소형가공시스템의 기하학적 오차 평가를 위한 새로운 다자유도 측정시스템을 제안하였다. 5 개의 정전용량변위센서를 사용하는 이 시스템을 통해 한 축의 움직임에 따른 5 개의 오차요소를 동시에 측정 가능하다. 균질 변환행렬을 이용한 측정알고리듬을 구성하고 이를 모의시험을 통해 평가하였다. 수학적 모델링을 통해 각 센서의 출력값을 유도하고 이를 이용하여 각 오차요소를 계산하기 위한 식을 유도하였다. 여기서, 단순화된 식을 적용한 경우, 임의의 오차에 대한 측정 알고리듬의 정확도를 평가하였다. 또한, 측정 시스템의 설치시 발생하는 셋업오차에 대한 측정 알고리듬의 민감도 분석을 행하였다. 제안하는 측정 시스템은 구조가 간단하고 고가의 부가장비가 필요치 않다. 또한, 적은 비용으로 구성할 수 있으며 높은 측정 정밀도를 가지고 소형가공시스템에 필요한 오차 평가를 행할 수 있다.가 함유된 계란을 생산하고 섭취하였을 때 특정항체들의 결합을 통해 병원성 미생물의 성장이나 군체를 형성하는 것을 무력화시켜 결과적으로 병원균을 감소시키거나 억제시킨다는 점이다. 오늘날 약물에 내성을 지닌 박테리아의 출현으로 질병감염을 막는데 항생제의 사용효과가 점차 감소하고 있기 때문에 이러한 항생제를 대체할 수 있는 방안으로 계란항체를 이용할 수 있다.한 중공 플랜지 형상의 단조 방법 중 보다 적절한 단조방법인 압조 단조에 있어서 일반적으로 사용되고 있는 SM10C에 대한 유한요소 해석을 수행하였으며, 제품의 형상비에 따라 폴딩 결함의 발생 유무를 검토하고, 폴딩 결함 없이 단조하기 위한 중공 플랜지의 형상한계 비를 제시하였다.도 경미하게 나타났으나, 경련이 나타난 쥐에서는 KA만을 투여한 흰쥐와 구별되지 않았다. 이상의 APT의 항산화 효과는 KA로 인한 뇌세포 변성 개선에 중요한 인자로 작용할 것으로 사료되나, 보다 명확한 APT의 기전을 검색하고 직접 임상에 응응하기 위하여는 보다 다양한 실험 조건이 보완되어야 찰 것으로 생각된다. 항우울약들의 항혈소판작용은 PKC-기질인 41-43 kD와 20 kD의 인산화를 억제함에 기인되는 것으로 사료된다.다. 것으로 사료된다.다.바와 같이 MCl에서 작은 Dv 값을 갖는데, 이것은 CdCl$_{4}$$^{2-}$ 착이온을 형성하거나 ZnCl$_{4}$$^{2-}$ , ZnCl$_{3}$$^{-}$같은 이온과 MgCl$^{+}$, MgCl$_{2}$같은 이온종을 형성하기 때문인것 같다. 한편 어떠한 용리액에서던지 NH$_{4}$$^{+}$의 경

  • PDF

Estimation of Perceived Curve Radius Considering Visual Distortion at Curve Sections (곡선부 시각왜곡현상을 고려한 인지곡선반경 산정에 관한 연구)

  • Shin, Jae-Man;Park, Je-Jin;Son, Sang-Ho;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.395-402
    • /
    • 2010
  • The seriousness of a traffic accident appears relatively higher on the curve sections compared with the straight sections due to a change in speed caused by a change in the driver's sight. In particular, the visual distortion phenomenon, one of the dangerous factors taking place on the curve sections, appears different according to the road's geometric design. Although it is a genuinely principal design factor which should be necessarily considered in designing a road, the previous researches on establishing the design standards for it have been insufficiently conducted. As a result, the establishment of the road design standards for the curve sections considering the sight distortion phenomenon is desperately required. This research examined the previous researches on the driver's behaviors, the driver's sight characteristics and the perceived curve radius on the curve sections, and developed the theoretical model of perceived curve radius to which a mathematical technique is applied in consideration of the visual distortion phenomenon on the two-lane curve sections in a local area. In addition, after the theoretical visual distortion was calculated on the basis of the theoretical model of perceived curve radius, the range of error on the theoretical recognition radius model formula was verified through comparing it with the previous researches' experiential visual distortion level and analyzing both of them. As a result, it was observed that as the curve radius practically increases in the theoretical recognition curve radius, the range of error tends to go down, which reflects well the characteristics of the curve sections on the road. Based on this research, it is expected that this research will be helpful to eliminate the safety defects when designing the curve sections and contribute to develop the road design standards considering human factors in the future.

A Prediction of the Land-cover Change Using Multi-temporal Satellite Imagery and Land Statistical Data: Case Study for Cheonan City and Asan City, Korea (다중시기 위성영상과 토지 통계자료를 이용한 토지피복 변화 예측: 천안시·아산시를 사례로)

  • KIM, Chansoo;PARK, Ji-Hoon;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.1
    • /
    • pp.41-56
    • /
    • 2011
  • This study analyzes the change in land-cover based on satellite imagery to draw up land-cover map in the future, and estimates the change in land category using statistical data of the land category. To estimate land category, this study applied the double exponentially smoothing method. The result of the land cover classification according to year using satellite imagery showed that the type with the largest increase in area of land cover change in the cities of Cheonan and Asan was artificial structure, followed by water, grass field and bare land. However forest, paddy, marsh and dry field were reduced. Further, the result of the time-series analysis of the land category was found to be similar to the result of the land cover classification using satellite imagery. Especially, the result of the estimation of the land category change using the double exponentially smoothing method showed that paddy, dry field, forest and marsh are anticipated to consistently decrease in area from 2010 to 2100, whereas artificial structure, water, bare land and grass field are anticipated to consistently increase. Such results can be utilized as basic data to estimate the change in land cover according to climate change in order to prepare climate change response strategies.

[Retracted]Analysis of Slope Safety by Tension Wire Data ([논문철회]지표변위계를 활용한 비탈면 안정성 예측)

  • Lee, Seokyoung;Jang, Seoyong;Kim, Taesoo;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.4
    • /
    • pp.5-12
    • /
    • 2015
  • Civil engineers have taken the numerous slope monitoring data for an engineering project subjected to hazard potential of slide. However, the topics on how to deal with and draw out proper information from the data related to the slope behavior have not been widely discussed. Recently, several researchers had installed the real-time monitoring system to cope with slope failure; however they are mainly focused on the hardware system installation. Therefore, this study tries to show how the measured data could be grouped and connected each other. The basic idea of analyzing method studied in this paper came from the clustering, which is the part of data mining analysis. Therefore, at the base of classification of time series data, the authors suggest three mathematical data analyzing methods; Average Index of different displacement ($AD_{i,j}$), Difference of average relative displacement ($\overline{RD}_{i,j}$) and Coordinate system of average and relative displacement ($\overline{RD}$, AD). These analyzing methods are based on the statistical method and failure mechanism of slope. Therefore they showed clustering relationships of the similar parts of the slope which makes the same sliding mechanism.