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1. Introduction research of miniature machine tools, accuracy enhance-
ment of machine tools is still one of the most critical
Miniature components are increasingly needed for a concerns, which iz mainly affected by geometric errors,
wide range of applications in the fields of biotechnology, thermal errors and cutting-force induced errors. In these
aerospace, semi-conductor industry, electronics, medical eITor sources, geometric error is a major contributor to the
robotics, and optics. Part materials include stainless steel, workpiece errors.
brass, alumimm, and even glass. To manufacture such Error compensation technique has been developed as a
small parts, the Miniaturized Machine Tool (mMT) is cost-effective method to achieve further improvement of
presented as an alternative to combine the adwvantages of the machine accuracy since 1970z, In the error
the existing methods, ie. LIGA MEMS, and ultra- compensation techniques, the crucial task is how to gather
precision conventional machining method [1]. In the necessary information about the interested errors.
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Conventional measurement technique and methodology
range from the use of laser interferometers, electronic
levels, mechanical squares, straight edges, and other
devices [2].

For a three-axis machine tool, however, the complete
measurement of 21 geometric emror components by the
conventional means is very time consuming. Zhang [3]
developed a displacement method to assess the 21
geometric errors through linear displacement measurement
along 22 lines in the working volume. Later, a Multi-
System  (MDFM
system) for identifying five geometric error components

Degree-of-Freedom  Measurement

simultaneously was developed by Ni [4]. To measure up to
3ix geometric error components at a time, Fan [5] reported
a six-degree-of-freed om measurement system (6DMS) and
in the calibration of this system it has shown good results
compatible with the HP 55284 interferometer.

But direct application of conventional devices to the
measuwrement of geometric errors on the mMT is not
feasible due to the order of magnitude of the reduction in
working volume of miniaturized machine tool, whose
whole dimensions are only 350 mm> 250 mm <400 mm
in our case. To tackle such problems, a size-compact, low-
cost and enough accurate multi-degree-of-freedom
measurement system is needed for the study of mMT.

This paper begins with a brief introduction about the
multi-degree-of-freedom measurement system. Using the
Homogeneous Transformation Matrix (HTM), an exact
mathematical model is extracted to describe the output of
every probe. Based on this exact model, a simple

algorithm is developed to obtain the five error components.

Simulation and error analysis are also presented to show
the effects of different factors contributing to the accuracy
of these methods. The proposed algorithms are evaluated
and the results are presented.

2. System Configuration

The prototype of our vertical miniaturized machine
tool is shown in Fig.1. The stepping motor is adopted as
the driver with the step size of 0.36 °. Non-contact optical
linear encoder (Renishaw Inc.) is chosen as the feedback
sensor, whose high accuracy, repeatability and linearity
can keep the linear displacement emror within 50
nanometers. This value of linear displacement error is so
small compared with other error components that it could
be though as zero. The spindle holder is fixed on the Z-
carriage. Z-camriage moves vertically along the vertical
column with a prismatic joint. The column is bolted on the
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bed. The Y-carriage is stacked and moves horizontally on
the X-carriage with a prismatic joint, and the X-carriage is
on the bed with a prismatic joint, too.

Fig. 2 shows the schematic diagram of the proposed
multi-DOF measurement system. It consists of two parts—-
the fixture, which is used to fix five capacitance probes (A,
B, C. D and E), and the target as the measured surface.
The fixture is installed on the position of tool holder and
the target part is fixed on the motion stage. Five probes are
divided into two units: top unit composed of three probes
can measure vertical straighiness error, pitch error and roll
error; and the side unit with two probes can measure the
horizontal straightness error and yaw error.

Tazxgel

Fig.2 Schematic of multi-DOF measurement system

3. Exact Mathematical Model

As shown in Fig.3, Op- Xp1 Y £y is the metrological
reference coordinate frame, and O1-X1Y1Z1 is the
carriage coordinate frame. When we measure geometric
errors in the X and Y direction, the Z-axis is adjusted and
locked. When the motion table moves in X-axis, there are
six geometric error components existing (Fig.3): linear
displacement error 6xx{d ), horizontal straightness error
Oy (d) , vertical straightness emror 8z (d), roll emror
ex (d) , pitch error £3x(d)and yaw emror ex{d). The
letter “ 4> in bracket, given here specially, implicates the
commanded linear displacement in intended motion
direction. For convenience, we simply express the six
SITOrS a8 Oy , Oy, O L Exx, &3 ANAExx .

After a linear displacement 4 , O1-X1Y1Z1 has
transformed to O°1-X°1Y’12°1{Fig.4) because of the six



geometric error components.

Tool holder + Z-Carriage

X-Carriage

Fig.3 Schematic of six geometric error motions

With the assumption of rigid body and small rotational
errors, the measured pointPl (xp1,¥p1,zp1) corresponds
to PO (xp0,¥p0,2p0) before the linear displacementd .
The relation between PO and P1 can be represented by the
well-known HTM [6]:

1 &, € d+8y
£ 1 -¢ &
T = X xx %4
»x Exx 1 51x
0 0 0 1
O Xy j
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Fig.4 Schematic of the measurement principle

If (xp1, yp1) of P1 is known, (xpo,yp0,zp0) of PO can be
obtained by:

(xpr Ypo  Zpo l)TzTil(xpl Yp1 Zpl l)T__(l)

Then, it is easy to derive from Equation (1):

2
_ xpl(gyx +EnEn) +yp1(7£:ac +‘€yx‘€zx) +Zp1(1 +ez)
1+s,52,C *3)21 *5;
2
+(752x + 5”(5” 75”(5“5” —6ne5 75,0[6),,( =8 En )t (~dey, —degyes)

z

po

1+s,2] +s)2m *531

There is such case existing that zp1 =zpo+Az in
which Az characterizes the relative output of probe and
zpo is zero since the point is chosen on the target surface.

1
Az= Zpl = W(gxx (ypl _5yx + (d_ xpl +5xx)‘€zx)
+e, (d—x, +0, +(-y, +8,)e,)+8, (1+&5)——(2)

Hquation (2) describes the output of probe by using related
geometric errors.

Fig. 5(a) shows the arrangement of the top probes.
Substituting the coordinate vector of each probe into
Equation (2) , the Exact Mathematical Model, which
describes the changes in output of every probe
incorporated with these geometric error components:

L
1+e;
18, (+e5) ——————— 3

Az, = (Eul(—0y +(d—1+8,)e ) +e,(d -0+, +8,,6.)

X

1
Azg = ?(em(z—éw F(d 485 )5 )T Ep(d+ 8, +(—+8,,)e,)

x

+6, (1+ efx )) R (4)
Az = 12 (B (= 8 +(d + 8,,)E ;) + 85 (d + 8 + (£ 48,08 ,)
+8(l+e5)——————— ®)

For the side-probe unit in Fig. 5(b), the same procedure is
used to extract their mathematical model. The {'has no

effect on relative outputs of the side probes:

)48, (1+e5)—(d

X

Ayp = % (£ (140, +(d+0, )ey
1

XX

8, +("-8, )8, )E, ) —————————— (6
1
Ayp = e (€, (08, +(d—£+35,)e,)+8, (1+£3)-
(= 08y + (47— 8,080 )62 ) = —————— @
! I
Yu ¢ Owu
Kt
(a) Top probe unit (b) Side probe unit

Fig.5 Position distribution of sensors in 3-D space
4. Algorithm for Geometric Exrrors

With the aforementioned case that §,, can be neglected,
the five geometric errors can be calculated by the
algorithm derived from Equations (3~7) through
mathematical elimination methods:



e e 3

x Y 3
Azp + Az

-7l B2 )

gyx: - (9)

° Azp + Az -

by = 32 C—dé, ——————— (10)

ézx:M; ,,,,,,,,,, an

4
S = Ayp + e + 6 g ————— (12)

where the ““represents calculated value. I fact, the
squareness errors can also be mathematically obtained
through using least square fitting method to deal with the

measured data about the straightness errors shown in Fig.6

(7.

Least Square Fitting Line

\ ‘S\_“)\

Fig.6 Schematic of least-square method

X

5. Evaluation of Algorithm

The above algorithm gives us a simplified method to
determine the geometric errors. In order to find out these
errors, higher than one order of error terms are eliminated
so that some accuracy errors are induced in this process. In
this paper, the exact mathematical model extracted in
previous section is used to study these induced errors. For
this  purpose,
( 8yx, 8zx , €xx , €yx and £z ) are predefined and introduced

five geometric error components
into Equations (3~7). It is feasible to solve these outputs of
all probesAZA N AZB R AZC s AyD andAyE . Then, the
equations (8~12) are applied to obtaingyx,gzx,éxx W
and &z , which are compared with their predefined values
to determine the induced errors. Simulation I (Appendix)
shows the induced errors are randomly distributed with the
zero mean. For the rotational errors and translational
errors, the induced errors are —107° rad ~ 10~ rad and —

0.06 pm ~ 0.06 pum, respectively.
6. Sensitivity Analysis

In this part, the effects of probe-mounting error,
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resulted from the imperfect machining process of probe
position, are investigated first. In common method [8], the
authors usually use the partial derivatives of interested
variables to study the effect of their variance. Here,
another method is used to define the probe-mounting error
based on the tolerance which is described by a circle with

the nominal position as the center point shown in Fig.7.

Fig.7 Schematic of probe-mounting error

x,=f+r%cosc
{ 4 . 7] (13)
V= Fxsinay

Xp = FXCOSQX

5 lB (14)
yp =£+rXsing,

X, = FXCOoSE
{ 4 ‘ (15)
Yy ==+ rXsino

In the above Equations (13~13), the polar coordinate
forms are used to depict the position variation of every
top probe where £ (tolerance radius) and angular
a;(i = A, B,C) together decide the possible position on
which the probe could be. For the top probe unit, only
the coordinates in X-Y plane are considered because the
relative changes of output in Z-axis are just our interests,
which are not affected by how high this probe is away
from the target surface. For the side unit, of course, only
the coordinates in X-Z plane are concerned and any
deviations in Y-direction do not have effects on the

output changes of the side probes.

o
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z

Fig.8 Schematic of installment-dependent error



In the experimental practice, it can not be avoided
that installment-dependsnt errors are induced (illustrated
in Fig.8). The installment-dependent errors are divided
parts: g .
8p and 8, errors in fixture installing process; and
translational offsets 65, oy ando:.
homogeneous transformation matrix can also be used to
deal with them:

into  two main rotational  errors

The concept of

CE,C8, —C 58, S8y Ty
¥ sesele, (08,08 X
Ipl Ll ey 58,56, o, #1
Y | | +C8.58,) —S8,58,:58,) Ppl
z' (-C8.58,08, (58,08 z
2 L Ry C8,Ch, o, #1
1 +58,58,) +CB, 58,58, 1
0 0 0 1

where the operators & = sine and ¢ = cosine. Because
these three angular errors are very small, the above
equation can be written as follow:

x'pl 1 -6, 6, 0, |x,

¥'pl _ 8, 1 =8 o, | ¥

7' -0, o 1 0;|za
1 0 o 1 1

Only the position variables in X-Y plane have effects on
the output changes of top probe unit and in above
transform square mafrix any error components related to =
coordinate are not considered Referring to Equation (1),
we can get:

Xpo I —en oy Ly 0 ol Fa

Yoo | | %= 1 —ey 5Jx 8, 1 0 0y|¥n

g S Exx 1 O 00 1 0|z,
1 0 0 0 1 o0 01 1

Same procedure in Section 3 is used to derive the present
output changes of top probe unit:

_ (exx(ypl —3yx +xp19y +(d —F¥p+ yplé?y —a e + {I},)

!
1+£§Jc

8, (8 —Fpy + Y fy — 0y + 8, (=W + 8y —F P, — 7, 00+ Fp, (14 eix))

2
1+&z,

Substituting the position coordinates of every top probe
into the above equation, we can get:

\ 1
Azl = 5
1+ &g,

(Eglrxana, -8+ +rxoasadd, +{d-{4+rxcosa,)

Hrxema gy, — 038, + Tp )+ St — (£ +r XoozaLg )+ r Xamar 8, — 7,

e =y + B — (4 rxcesa )8, oLl + 8, {1+ LS8 pp—
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Ag'y :;z[exx[[f +rxsineg) =8, + (rxsinog)d, + (d-rxcoog
=
+E+ rxsmoag I8, 0,08, + 0,1+ 8, (d —Fxcos ap HIHTxEMop )8,
-, + &, (—f —Fxsiney + Byx —(rxoosag)d, —o,])
+8, (l+s27)
1
1+,

Azl = Bl +rxanae)— 8, + (rxsnas 8, + (d - rxcosag
H—f+rxana )8, - ¢ )e, + 7, )+, d —rXoosds + (4 +r K ana 9,
G, e (v xsinge + 8, — (rxoosag )8, -0

+8,, L+ a2}

For the side probe unit, we can obtain the probes® output
changes:

Ay'y = 12 {(Suxl ("t rxanap )+ 8, + (rxcosan 18, + (4 - (rxecwagp)
I+,

—{grrxsinag )8, — 0,8, — 0, )+ 8, (14 €5, ) (d - {rxcosap)

=" rxsnan @, -, + (8 r xaneg ) - 8,

—{rxeostn B, + 07 )8 ) )

Ay'p = ;Q(Sm(—(x"+r><sina£)+ 8, +(rxcosag )8, +(d - (rxcosag)
1+ 55,
—{rxsingg )8, - e, -0, )4 8 1+ 2, )~ (d - (r xoosag)
— 4 em e}, -0+ (" r X anag) - 8,
—frxeusagle, v e e, —o—-o
Equations (16 ~20) are introduced into Equations (8 ~ 12)
and the same process to Simulation Iis used to investigate
the sensitivity of simplified algorithm when both probs-
mounting errors and installment-dependent errors appear
simultaneously. In Simulation II[{Appendix), the same
predetined wvalues of all error motion components to the
simulation I are adopted. The results show that the induced
errors for rotational error and translational error are at
most —1.5%x107 rad ~1.5%10~ rad and —0.6 pm~ 0.6
prm. The rangss are also only about 14100 of the
predefined walues. So it can be thought this algorithm is
enough robust for the existence of the probe-mounting

errors and installment-dependent errors.
7. Conclusien

1. A capacitancesensor based multi-degree-of-
freedom measurement system has been proposed for the
miniaturized machine tool to measure five geometric
errors simultaneously when one axis moves.

2. Baged on homogeneous fransformation matriz, the
exact mathematical model is derived to establish the
relation between the outputs of probes and geometric
errors. An algorithm has been developed to calculate
individual geometric error component.

3. From the simulation results, the induced errors



could be kept within 1/ 200 of the predefined value of
svery measured geometric error. And during sensitivity
analysiz this measurement method has better robustness
for rotational errors than for translational errors. And the
later ones show the increasing frend when the linear
displacement become larger.

Further, this proposed system can be constructed and
used in error compensation for miniaturized machine tool.
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Simulation Parameters,
£ . &% . €2z = Random (- 10%rad, 107 rad)
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Simulation I  Algorithm evaluation results
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Simulation parameters;
6, = 0.002,6, = 0.002,05 = SOpm;Gy = SOm

e; = random{0,2x),i= 4,8,C,D . F
{ i represents which probe iz investigated)
d=0~10000pm #=10pm

Simulation II  Sensitivity Analysis Results



