• Title/Summary/Keyword: 한국이미지

Search Result 12,827, Processing Time 0.055 seconds

A Study on TensorFlow based Image Processing: Focusing by Pill Classification (텐서플로우 기반 이미지 프로세싱에 대한 연구: 알약분류 중심으로)

  • Joe, Soo-Hyoung;Kang, Jin-Goo;Kim, Jung-Hoon;Lee, Sung-Jun;Kim, Gyeyoung;Kim, Youngjong
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.559-561
    • /
    • 2019
  • 이미지 프로세싱이란 기존의 이미지에 대해 컴퓨터를 이용하여 새로운 이미지로 창작하거나 수정하는 일련의 작업 과정이다. 우리는 알약의 이미지를 가져와 machine이 인지 할 수 있도록 수정한 후, 사진에 찍힌 알약을 구별하고 사용자 에게 그 알약의 정보들을 제공 할 수 있는 텐서플로우 기반의 이미지 프로세싱 방법에 대해 연구 하였다.

Colorization of gray image Using DCGAN (DCGAN기반의 흑백 이미지의 색상화)

  • Kim, Do-Hyoung;Song, Kwan-Dong;Wi, Seung-Ok;Kim, Ji-Hee;Jeon, Gwang-Gil
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.1016-1018
    • /
    • 2019
  • 흑백 1채널 이미지를 3 채널 이미지로 색상화하고 Super-Resolution하여 의미 있는 정보 얻도록 한다. CCTV, 군사용 카메라, 차량용 블랙박스 등 많은 분야에서 주간에 촬영된 영상은 컬러 이미지로 많은 정보를 얻을 수 있다. 하지만 야간에 촬영된 영상은 빛이 없어서 영상에서 정보를 얻기가 원활하지 않다. 따라서 DCGAN을 통해 단일 채널의 흑백 이미지를 3채널의 색상화 이미지로 만들고, Super-Resolution 기술을 적용해서 해상도를 높여 가시광선이 없는 야간이나 어두운 공간에서도 의미있는 영상을 얻을 수 있도록 한다.

Emotional Image Color Transfer via Voice Emotion Analytics System Based on Raspberry Pi (라즈베리 파이 기반의 음성 감정 분석 시스템을 통한 감성적 이미지 색상 전달)

  • Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.391-393
    • /
    • 2019
  • 본 논문은 일상적인 대화로부터 감성을 추출하고 분석함으로써 상황에 맞는 대화의 내용과 분위기를 이미지의 색상으로 표현할 수 있는 이미지 색상 변환 프레임워크를 소개한다. 본 연구는 라즈베리 파이와 마이크 센서를 기반으로 사용자로부터 목소리를 입력받을 수 있는 모듈을 제작하고, 그 목소리로부터 감성을 분석한다. 분석된 감성을 이용하여 이미지의 색상을 자동으로 변환하는 기술과 통합함으로써 청각장애인 및 미취학 아동들이 화자의 대화를 이미지를 통해 쉽게 인지하여 의사소통 및 감성 전달 환경을 개선하고자 한다.

  • PDF

Action Recognition Reference Image Captioning (행동 인식 참조 이미지 캡셔닝)

  • Park, Eun-Soo;Kim, Seunghwan;Ryu, Jaesung;Kim, Seondae;Mujtaba, Ghulam;Ryu, Eun-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.21-24
    • /
    • 2019
  • 본 논문에서 기존의 이미지 캡셔닝의 문제점인 행동 인식 관련한 문제를 해결한다. 이미지 캡셔닝 모델의 학습 데이터의 행동 부분 즉, 동사 부분으로 행동 인식 데이터 셋을 만들었을 경우 많은 클래스, 각 클래스에는 적은 데이터로 구성됨을 보였다. 따라서, 본 논문에서 행동 인식 모델을 추가하고, 임계값을 두어 이미지 캡셔닝의 동사 부분의 정확도가 낮을 경우, 그리고 행동 인식 모델의 정확도가 높을 경우 두 결과물을 교체하는 방식으로 이미지 캡셔닝의 문제점을 해결한다. 본 논문에서 제안하는 모델에 대한 설명과 구현 과정 및 행동 인식에 강인한 이미지 캡셔닝 실험 결과를 보인다.

  • PDF

High Dynamic Range Image Tone Mapping Method using Local Edge Preserving Filter and Gradient Scale (지역 에지 보존 필터와 변화도 스케일을 이용한 HDR 이미지 톤 매핑 기법)

  • Eom, Taeyoung;Wee, Seungwoo;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.124-127
    • /
    • 2018
  • 넓은 동적 영역 (High Dynamic Range: HDR) 이미지는 주관적 화질 측면에서 우수하지만 대부분의 디스플레이는 좁은 동적 영역 (Low Dynamic Rang e: LDR) 만 지원이 가능하다. 본 논문에서는 이를 해결하기 위해서 톤 매핑 기법 (Tone Mapping Operator: TMO) 을 사용하여 넓은 동적 영역을 압축하여 수행한다. 기존의 지역 에지 보존 (Local Edge Preserving: LEP) 필터를 적용한 이미지결과는 에지를 보존하지만, 스케일의 분해 과정 중 디테일의 손실이 발생되었다. 본 논문에서는 이미지 변화도를 기반으로 디테일을 보존하는 알고리듬을 제안한다. LEP 필터가 적용되기 전에 이미지의 변화도와 동적 영역이 압축된 후의 이미지에 대한 변화도의 차이만큼 가중하여 디테일을 보존함으로써 주관적 화질을 향상시켰다.

  • PDF

Searching and Clustering of Textile Images (텍스타일 이미지 검색 및 클러스터링)

  • Kang, Miyeong;Lee, Eunok;Park, Uchang
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.152-154
    • /
    • 2010
  • 본 연구에서는 내용 기반의 텍스타일 이미지 검색 시스템을 구축하였다. 텍스타일 이미지에 대한 색상, 질감, 모양 특성 추출 조합을 각각 혹은 가중치를 이용한 방법으로 검색한다. 검색은 사용자 인터페이스에서 오라클 데이터베이스 시스템에서 제공되는 이미지의 색상, 질감 특성 값에 대한 검색과 결과 피드백을 보면서 진행된다. 또 검색 대상 이미지들을 유사도에 따라 다차원 비례법에 의하여 2차원 화면에 클러스터링하여 전체 이미지의 군집화 특성을 쉽게 파악할 수 있는 기능을 구현하였다.

Korean and English Text Image Super-Resolution for Improving Text Recognition Accuracy (텍스트 인식률 개선을 위한 한글 및 영어 텍스트 이미지 초해상화)

  • Kwon, Junhyeong;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.72-75
    • /
    • 2022
  • 야외 환경을 카메라로 촬영한 일반 영상에서 텍스트 이미지를 검출하고 인식하는 기술은 로봇 비전, 시각 보조 등의 기반이 되는 기술로 활용될 수 있어 매우 중요한 기술이다. 하지만 저해상도의 텍스트 이미지의 경우 텍스트 이미지에 포함된 노이즈나블러 등이 더 두드러지기 때문에 텍스트 내용을 인식하는 것이 어렵다. 이에 본 논문은 일반 영상에서의 저해상도 한글 및 영어 텍스트에 대한 이미지 초해상화를 통해 텍스트 인식 정확도를 개선하였다. 트랜스포머에 기반한 모델로 한글 및 영어 텍스트에 대한 이미지 초해상화를 수행하였으며, 영어 및 한글 데이터셋에 대해 제안한 초해상화 방법을 적용했을 때 그렇지 않을 때보다 텍스트 인식 성능이 개선되는 것을 확인하였다.

  • PDF

Face Recognition using Image Super-Resolution (이미지 초해상화를 이용한 얼굴 인식)

  • Park, Junyoung;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.85-87
    • /
    • 2022
  • 최근 CCTV 출입 기록, 휴대폰 보안, 스마트 매장 등에서 얼굴 인식을 통해 개인을 식별하는 기술이 널리 사용되고 있다. 카메라의 각도, 조명, 사람의 움직임 등 얼굴 인식에 많은 외부 환경이 영향을 미치고 있지만 그중에서도 실제 영상에서 얼굴이 차지하는 영역이 작아 저해상도 얼굴 인식에 어려움을 겪고 있다. 이러한 문제점을 해결하고자 본 논문에서는 이미지 해상도가 얼굴 인식에 끼치는 영향을 알아보고 이미지 초해상화를 통해 얼굴 인식 성능을 개선하고자 한다. 쌍선형, 양3차 회선 보간법과 딥러닝 기반의 이미지 초해상화 모델인 RCAN을 이용하여 업스케일링한 데이터셋에 대해 학습한 ArcFace를 통해 얼굴 검증 평가를 진행하였다. 고해상도 이미지는 얼굴 인식 성능을 향상시키며, RCAN을 사용한 이미지 초해상화가 보간법을 사용한 방법보다 더 좋은 성능을 보였다.

  • PDF

Malware Classification Schemes Based on CNN Using Images and Metadata (이미지와 메타데이터를 활용한 CNN 기반의 악성코드 패밀리 분류 기법)

  • Lee, Song Yi;Moon, Bongkyo;Kim, Juntae
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.212-215
    • /
    • 2021
  • 본 논문에서는 딥러닝의 CNN(Convolution Neural Network) 학습을 통하여 악성코드를 실행시키지 않고서 악성코드 변종을 패밀리 그룹으로 분류하는 방법을 연구한다. 먼저 데이터 전처리를 통해 3가지의 서로 다른 방법으로 악성코드 이미지와 메타데이터를 생성하고 이를 CNN으로 학습시킨다. 첫째, 악성코드의 byte 파일을 8비트 gray-scale 이미지로 시각화하는 방법이다. 둘째, 악성코드 asm 파일의 opcode sequence 정보를 추출하고 이를 이미지로 변환하는 방법이다. 셋째, 악성코드 이미지와 메타데이터를 결합하여 분류에 적용하는 방법이다. 이미지 특징 추출을 위해서는 본고에서 제안한 CNN을 통한 학습 방식과 더불어 3개의 Pre-trained된 CNN 모델을 (InceptionV3, Densnet, Resnet-50) 사용하여 전이학습을 진행한다. 전이학습 시에는 마지막 분류 레이어층에서 본 논문에서 선택한 데이터셋에 대해서만 학습하도록 파인튜닝하였다. 결과적으로 가공된 악성코드 데이터를 적용하여 9개의 악성코드 패밀리로 분류하고 예측 정확도를 측정해 비교 분석한다.

3D Human Keypoint Detection With RGB and Depth Image (RGB 이미지와 Depth 이미지를 이용한 3D 휴먼 키포인트 탐지)

  • Jeong, Keunseok;Lee, Yegi;Yoon, Kyoungro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.239-241
    • /
    • 2021
  • 2019 발생한 COVID-19로 인하여 전 세계 사람들의 여가 활동이 제한되면서 건강관리를 위해 홈 트레이닝에 많은 관심을 기울이고 있다. 뿐만 아니라 최근 컴퓨팅 기술의 발전에 따라 사람의 행동을 눈으로 직접 판단했던 작업을 컴퓨터가 키포인트 탐지를 통해 인간의 행동을 이해하려는 많은 연구가 진행되고 있다. 이에 따라 본 논문은 Azure Kinect를 이용하여 촬영한 RGB 이미지와 Depth 이미지를 이용하여 3D 키포인트를 추정한다. RGB 이미지는 2D 키포인트 탐지기를 이용하여 2차원 공간에서의 좌표를 탐지한다. 앞서 탐지한 2D 좌표를 Depth 이미지에 투영하여 추출한 3D 키포인트의 깊이 값을 이용하여 3D 키포인트 탐지에 대한 연구 개발하였다.

  • PDF