• Title/Summary/Keyword: 한국어 텍스트 마이닝

Search Result 35, Processing Time 0.019 seconds

Transformation-based Learning for Korean Comparative Sentence Classification (한국어 비교 문장 유형 분류를 위한 변환 기반 학습 기법)

  • Yang, Seon;Ko, Young-Joong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.155-160
    • /
    • 2010
  • This paper proposes a method for Korean comparative sentence classification which is a part of comparison mining. Comparison mining, one area of text mining, analyzes comparative relations from the enormous amount of text documents. Three-step process is needed for comparison mining - 1) identifying comparative sentences in the text documents, 2) classifying those sentences into several classes, 3) analyzing comparative relations per each comparative class. This paper aims at the second task. In this paper, we use transformation-based learning (TBL) technique which is a well-known learning method in the natural language processing. In our experiment, we classify comparative sentences into seven classes using TBL and achieve an accuracy of 80.01%.

Developing Corporate Valuation System with Opinion Mining Based on Big Data (빅데이터 기반의 오피니언 마이닝을 이용한 기업 가치 평가 시스템 개발)

  • Lee, Jung-Tae;Cheon, Mina;Lim, Sang-Woo;June, Byung-Seok;Kim, Jae-Hoon;Han, Yeong-Woo
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.126-128
    • /
    • 2013
  • 빅데이터(Big Data)는 현재 생산되고 있는 데이터 중 그 규모가 방대하고, 생성 주기가 짧으며, 수치 데이터 뿐 아니라 텍스트 이외의 멀티미디어 등 비정형화된 데이터를 포함하는 대규모 데이터를 말한다. 빅데이터를 처리하여 가치 있는 정보를 추출하는 방법에 관한 연구가 활발하게 진행되고 있으며, 이를 바탕으로 빅데이터가 다양한 분야에서 활용되고 있다. 현재 국내 주식시장에서도 빅데이터를 이용하여 기업의 투자에 활용하고 있다. 이 논문에서는 인터넷의 증권과 관련된 뉴스를 수집하여 수집된 뉴스와 주가 지수를 이용하여 기업 뉴스 평가 시스템을 개발하는 방법을 제안한다.

  • PDF

Product reputation mining based on sentiment analysis (감성 분석 기반의 제품 평판 마이닝)

  • Song, In-Hwan;Han, Jinju;On, Byung-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.429-433
    • /
    • 2019
  • 스마트폰 보급의 확산으로 제품 구매 시 웹 사이트 및 SNS를 이용하여 제품 리뷰를 참고하는 소비자들이 증가하고 있다. 전자 상거래 사이트의 제품 리뷰는 구매 예정자들에게 유용한 정보로 활용되곤 한다. 하지만 구매 예정자가 직접 제품에 대한 리뷰 데이터를 찾아 전체 내용을 일일이 읽고 분석해야하기 때문에 시간이 오래 걸릴뿐만 아니라 가공되지 않는 데이터가 줄 수 있는 정보는 한정적이다. 또한 이러한 리뷰들은 상품의 특징을 파악하기에도 어려움이 있다. 본 논문에서는 제품의 주요 이슈를 추출하고 주요 이슈에 대한 감성 분석과 감성 요약을 통해 제품 분석 및 평가를 제공하는 시스템을 설계 및 구현하였다. 이를 휴대폰 제품에 적용하여 구축한 시스템을 통해 소비자가 방대한 양의 제품의 리뷰 데이터를 분석할 필요 없이 제품의 주요 이슈와 가공된 분석 결과를 시각적으로 빠르게 제공받을 수 있음을 보였다.

  • PDF

User Experience Evaluation of Menstrual Cycle Measurement Application Using Text Mining Analysis Techniques (텍스트 마이닝 분석 기법을 활용한 월경주기측정 애플리케이션 사용자 경험 평가)

  • Wookyung Jeong;Donghee Shin
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.4
    • /
    • pp.1-31
    • /
    • 2023
  • This study conducted user experience evaluation by introducing various text mining techniques along with topic modeling techniques for mobile menstrual cycle measurement applications that are closely related to women's health and analyzed the results by combining them with a honeycomb model. To evaluate the user experience revealed in the menstrual cycle measurement application review, 47,117 Korean reviews of the menstrual cycle measurement application were collected. Topic modeling analysis was conducted to confirm the overall discourse on the user experience revealed in the review, and text network analysis was conducted to confirm the specific experience of each topic. In addition, sentimental analysis was conducted to understand the emotional experience of users. Based on this, the development strategy of the menstrual cycle measurement application was presented in terms of accuracy, design, monitoring, data management, and user management. As a result of the study, it was confirmed that the accuracy and monitoring function of the menstrual cycle measurement of the application should be improved, and it was observed that various design attempts were required. In addition, the necessity of supplementing personal information and the user's biometric data management method was also confirmed. By exploring the user experience (UX) of the menstrual cycle measurement application in-depth, this study revealed various factors experienced by users and suggested practical improvements to provide a better experience. It is also significant in that it presents a methodology by combines topic modeling and text network analysis techniques so that researchers can closely grasp vast amounts of review data in the process of evaluating user experiences.

BERT-based Classification Model for Korean Documents (한국어 기술문서 분석을 위한 BERT 기반의 분류모델)

  • Hwang, Sangheum;Kim, Dohyun
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.1
    • /
    • pp.203-214
    • /
    • 2020
  • It is necessary to classify technical documents such as patents, R&D project reports in order to understand the trends of technology convergence and interdisciplinary joint research, technology development and so on. Text mining techniques have been mainly used to classify these technical documents. However, in the case of classifying technical documents by text mining algorithms, there is a disadvantage that the features representing technical documents must be directly extracted. In this study, we propose a BERT-based document classification model to automatically extract document features from text information of national R&D projects and to classify them. Then, we verify the applicability and performance of the proposed model for classifying documents.

Detection of Knowledge Structure of Korean Studies Using Document Co-citation Analysis: the Difference between Self-perception and Others' Perception (문헌동시인용 분석을 통한 한국학 지식구조 파악: 주체 인식과 타자 인식의 차이)

  • Kim, Hea-JIn
    • Journal of Korean Library and Information Science Society
    • /
    • v.51 no.1
    • /
    • pp.179-200
    • /
    • 2020
  • This study aims to detect the knowledge structure of Korean studies using document co-citation analysis and text mining techniques. This study divided Korean corpus into two perspectives: Self-perceived and others' perceived Korean studies. To this end, we collected 10,929 humanities and social literature containing the word Korea or Korean as a keyword in the SCOPUS database. As a result of analysis, a total of 20 subdomains were found in the knowledge structure of self-perception, and a total of 14 subdomains were found in the knowledge structure of otherts' perception. Differences in Korean Studies between two are: First, the sub-area of self-perceived Korean studies is subdivided into more diverse areas than the sub-area of other-perceived Korean studies. Second the major areas in self-perceived Korean studies are customers and services, industrialization, multiculturalism, mental health, tourism, Korean language, environment, and cities. Others' perceptions of Korean Studies are grouped into domestic and foreign situations of Korea, Korean pop culture, Koreans as US immigrants, and Korean language. Finally, the common areas of self-perception and others' perception were mental health, tourism, Korean language, North-Korean defectors, and juvenile delinquency.

Korea-English Noun Phrase Machine Translation (한국어와 영어의 명사구 기계 번역)

  • Cho, Hee-Young;Seo, Hyung-Won;Kim, Jae-Hoon;Yang, Sung-Il
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.273-278
    • /
    • 2006
  • 이 논문에서 통계기반의 정렬기법을 이용한 한영/영한 양방향 명사구 기계번역 시스템을 설계하고 구현한다. 정렬기법을 이용한 기계번역 시스템을 구축하기 위해서는 않은 양의 병렬말뭉치(Corpus)가 필요하다. 이 논문에서는 병렬 말뭉치를 구축하기 위해서 웹으로부터 한영 대역쌍을 수집하였으며 수집된 병렬 말뭉치와 단어 정렬 도구인 GIZA++ 그리고 번역기(decoder)인 PARAOH(Koehn, 2004), RAMSES(Patry et al., 2002), MARIE(Crego et at., 2005)를 사용하여 한영/영한 양방향 명사구 번역 시스템을 구현하였다. 약 4만 개의 명사구 병렬 말뭉치를 학습 말뭉치와 평가 말뭉치로 분리하여 구현된 시스템을 평가하였다. 그 결과 한영/영한 모두 약 37% BLEU를 보였으나, 영한 번역의 성공도가 좀더 높았다. 앞으로 좀더 많은 양의 병렬 말뭉치를 구축하여 시스템의 성능을 향상시켜야 할 것이며, 지속적으로 병렬 말뭉치를 구축할 수 있는 텍스트 마이닝 기법이 개발되어야 할 것이다. 무엇보다도 한국어 특성에 적합한 단어 정렬 모델이 연구되어야 할 것이다. 또한 개발된 시스템을 다국어 정보검색 시스템에 직접 적용해서 그 효용성을 평가해보아야 할 것이다.

  • PDF

Development of a Fake News Detection Model Using Text Mining and Deep Learning Algorithms (텍스트 마이닝과 딥러닝 알고리즘을 이용한 가짜 뉴스 탐지 모델 개발)

  • Dong-Hoon Lim;Gunwoo Kim;Keunho Choi
    • Information Systems Review
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2021
  • Fake news isexpanded and reproduced rapidly regardless of their authenticity by the characteristics of modern society, called the information age. Assuming that 1% of all news are fake news, the amount of economic costs is reported to about 30 trillion Korean won. This shows that the fake news isvery important social and economic issue. Therefore, this study aims to develop an automated detection model to quickly and accurately verify the authenticity of the news. To this end, this study crawled the news data whose authenticity is verified, and developed fake news prediction models using word embedding (Word2Vec, Fasttext) and deep learning algorithms (LSTM, BiLSTM). Experimental results show that the prediction model using BiLSTM with Word2Vec achieved the best accuracy of 84%.

Detecting Improper Sentences in a News Article Using Text Mining (텍스트 마이닝을 이용한 기사 내 부적합 문단 검출 시스템)

  • Kim, Kyu-Wan;Sin, Hyun-Ju;Kim, Seon-Jin;Lee, Hyun Ah
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.294-297
    • /
    • 2017
  • SNS와 스마트기기의 발전으로 온라인을 통한 뉴스 배포가 용이해지면서 악의적으로 조작된 뉴스가 급속도로 생성되어 확산되고 있다. 뉴스 조작은 다양한 형태로 이루어지는데, 이 중에서 정상적인 기사 내에 광고나 낚시성 내용을 포함시켜 독자가 의도하지 않은 정보에 노출되게 하는 형태는 독자가 해당 내용을 진짜 뉴스로 받아들이기 쉽다. 본 논문에서는 뉴스 기사 내에 포함된 문단 중에서 부적합한 문단이 포함 되었는지를 판정하기 위한 방법을 제안한다. 제안하는 방식에서는 자연어 처리에 유용한 Convolutional Neural Network(CNN)모델 중 Word2Vec과 tf-idf 알고리즘, 로지스틱 회귀를 함께 이용하여 뉴스 부적합 문단을 검출한다. 본 시스템에서는 로지스틱 회귀를 이용하여 문단의 카테고리를 분류하여 본문의 카테고리 분포도를 계산하고 Word2Vec을 이용하여 문단간의 유사도를 계산한 결과에 가중치를 부여하여 부적합 문단을 검출한다.

  • PDF

Analysis of Judicial Precedent Information related to Debt Recovery based on Deep-Learning (심층 학습 기반의 채권 회수 판례 분석)

  • Kim, Seon-wu;Ji, Sun-young;Choi, Sung-pil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.373-377
    • /
    • 2018
  • 판례는 재판에 대한 선례로, 법적 결정에 대한 근거가 되는 핵심 단서 중 하나이다. 본 연구에서는 채권회수를 예측하는 서비스 구축을 위한 단서를 추출하기 위해 채권 회수 판례를 수집하여 이를 분석한다. 먼저 채권 회수 판례에 대한 기초 분석을 위하여, 채권 회수 사례와 비회수 사례를 각 20건씩 수집하여 분석하였으며, 이후 대법원 및 법률 지식베이스의 채권 관련 판례 12,457건을 수집하고 채권 회수 여부에 따라 가공하였다. 채권 회수 사례와 비회수 사례를 분류하기 위한 판례 내의 패턴을 분석하여 레이블링하고, 이를 자동 분류할 수 있는 Bidirectional LSTM 기반 심층학습 모델을 구성하여 학습하였다. 채권 관련 판례 가공 기준에 따라 네 가지의 데이터 셋을 구성하였으며, 각 데이터셋을 8:2의 비율로 나누어 실험한 결과, 검증 데이터에 대하여 F1 점수 89.82%의 우수한 성능을 보였다.

  • PDF