This paper proposes a method for Korean comparative sentence classification which is a part of comparison mining. Comparison mining, one area of text mining, analyzes comparative relations from the enormous amount of text documents. Three-step process is needed for comparison mining - 1) identifying comparative sentences in the text documents, 2) classifying those sentences into several classes, 3) analyzing comparative relations per each comparative class. This paper aims at the second task. In this paper, we use transformation-based learning (TBL) technique which is a well-known learning method in the natural language processing. In our experiment, we classify comparative sentences into seven classes using TBL and achieve an accuracy of 80.01%.
Annual Conference on Human and Language Technology
/
2013.10a
/
pp.126-128
/
2013
빅데이터(Big Data)는 현재 생산되고 있는 데이터 중 그 규모가 방대하고, 생성 주기가 짧으며, 수치 데이터 뿐 아니라 텍스트 이외의 멀티미디어 등 비정형화된 데이터를 포함하는 대규모 데이터를 말한다. 빅데이터를 처리하여 가치 있는 정보를 추출하는 방법에 관한 연구가 활발하게 진행되고 있으며, 이를 바탕으로 빅데이터가 다양한 분야에서 활용되고 있다. 현재 국내 주식시장에서도 빅데이터를 이용하여 기업의 투자에 활용하고 있다. 이 논문에서는 인터넷의 증권과 관련된 뉴스를 수집하여 수집된 뉴스와 주가 지수를 이용하여 기업 뉴스 평가 시스템을 개발하는 방법을 제안한다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.429-433
/
2019
스마트폰 보급의 확산으로 제품 구매 시 웹 사이트 및 SNS를 이용하여 제품 리뷰를 참고하는 소비자들이 증가하고 있다. 전자 상거래 사이트의 제품 리뷰는 구매 예정자들에게 유용한 정보로 활용되곤 한다. 하지만 구매 예정자가 직접 제품에 대한 리뷰 데이터를 찾아 전체 내용을 일일이 읽고 분석해야하기 때문에 시간이 오래 걸릴뿐만 아니라 가공되지 않는 데이터가 줄 수 있는 정보는 한정적이다. 또한 이러한 리뷰들은 상품의 특징을 파악하기에도 어려움이 있다. 본 논문에서는 제품의 주요 이슈를 추출하고 주요 이슈에 대한 감성 분석과 감성 요약을 통해 제품 분석 및 평가를 제공하는 시스템을 설계 및 구현하였다. 이를 휴대폰 제품에 적용하여 구축한 시스템을 통해 소비자가 방대한 양의 제품의 리뷰 데이터를 분석할 필요 없이 제품의 주요 이슈와 가공된 분석 결과를 시각적으로 빠르게 제공받을 수 있음을 보였다.
Journal of the Korean Society for information Management
/
v.40
no.4
/
pp.1-31
/
2023
This study conducted user experience evaluation by introducing various text mining techniques along with topic modeling techniques for mobile menstrual cycle measurement applications that are closely related to women's health and analyzed the results by combining them with a honeycomb model. To evaluate the user experience revealed in the menstrual cycle measurement application review, 47,117 Korean reviews of the menstrual cycle measurement application were collected. Topic modeling analysis was conducted to confirm the overall discourse on the user experience revealed in the review, and text network analysis was conducted to confirm the specific experience of each topic. In addition, sentimental analysis was conducted to understand the emotional experience of users. Based on this, the development strategy of the menstrual cycle measurement application was presented in terms of accuracy, design, monitoring, data management, and user management. As a result of the study, it was confirmed that the accuracy and monitoring function of the menstrual cycle measurement of the application should be improved, and it was observed that various design attempts were required. In addition, the necessity of supplementing personal information and the user's biometric data management method was also confirmed. By exploring the user experience (UX) of the menstrual cycle measurement application in-depth, this study revealed various factors experienced by users and suggested practical improvements to provide a better experience. It is also significant in that it presents a methodology by combines topic modeling and text network analysis techniques so that researchers can closely grasp vast amounts of review data in the process of evaluating user experiences.
It is necessary to classify technical documents such as patents, R&D project reports in order to understand the trends of technology convergence and interdisciplinary joint research, technology development and so on. Text mining techniques have been mainly used to classify these technical documents. However, in the case of classifying technical documents by text mining algorithms, there is a disadvantage that the features representing technical documents must be directly extracted. In this study, we propose a BERT-based document classification model to automatically extract document features from text information of national R&D projects and to classify them. Then, we verify the applicability and performance of the proposed model for classifying documents.
Journal of Korean Library and Information Science Society
/
v.51
no.1
/
pp.179-200
/
2020
This study aims to detect the knowledge structure of Korean studies using document co-citation analysis and text mining techniques. This study divided Korean corpus into two perspectives: Self-perceived and others' perceived Korean studies. To this end, we collected 10,929 humanities and social literature containing the word Korea or Korean as a keyword in the SCOPUS database. As a result of analysis, a total of 20 subdomains were found in the knowledge structure of self-perception, and a total of 14 subdomains were found in the knowledge structure of otherts' perception. Differences in Korean Studies between two are: First, the sub-area of self-perceived Korean studies is subdivided into more diverse areas than the sub-area of other-perceived Korean studies. Second the major areas in self-perceived Korean studies are customers and services, industrialization, multiculturalism, mental health, tourism, Korean language, environment, and cities. Others' perceptions of Korean Studies are grouped into domestic and foreign situations of Korea, Korean pop culture, Koreans as US immigrants, and Korean language. Finally, the common areas of self-perception and others' perception were mental health, tourism, Korean language, North-Korean defectors, and juvenile delinquency.
Annual Conference on Human and Language Technology
/
2006.10e
/
pp.273-278
/
2006
이 논문에서 통계기반의 정렬기법을 이용한 한영/영한 양방향 명사구 기계번역 시스템을 설계하고 구현한다. 정렬기법을 이용한 기계번역 시스템을 구축하기 위해서는 않은 양의 병렬말뭉치(Corpus)가 필요하다. 이 논문에서는 병렬 말뭉치를 구축하기 위해서 웹으로부터 한영 대역쌍을 수집하였으며 수집된 병렬 말뭉치와 단어 정렬 도구인 GIZA++ 그리고 번역기(decoder)인 PARAOH(Koehn, 2004), RAMSES(Patry et al., 2002), MARIE(Crego et at., 2005)를 사용하여 한영/영한 양방향 명사구 번역 시스템을 구현하였다. 약 4만 개의 명사구 병렬 말뭉치를 학습 말뭉치와 평가 말뭉치로 분리하여 구현된 시스템을 평가하였다. 그 결과 한영/영한 모두 약 37% BLEU를 보였으나, 영한 번역의 성공도가 좀더 높았다. 앞으로 좀더 많은 양의 병렬 말뭉치를 구축하여 시스템의 성능을 향상시켜야 할 것이며, 지속적으로 병렬 말뭉치를 구축할 수 있는 텍스트 마이닝 기법이 개발되어야 할 것이다. 무엇보다도 한국어 특성에 적합한 단어 정렬 모델이 연구되어야 할 것이다. 또한 개발된 시스템을 다국어 정보검색 시스템에 직접 적용해서 그 효용성을 평가해보아야 할 것이다.
Fake news isexpanded and reproduced rapidly regardless of their authenticity by the characteristics of modern society, called the information age. Assuming that 1% of all news are fake news, the amount of economic costs is reported to about 30 trillion Korean won. This shows that the fake news isvery important social and economic issue. Therefore, this study aims to develop an automated detection model to quickly and accurately verify the authenticity of the news. To this end, this study crawled the news data whose authenticity is verified, and developed fake news prediction models using word embedding (Word2Vec, Fasttext) and deep learning algorithms (LSTM, BiLSTM). Experimental results show that the prediction model using BiLSTM with Word2Vec achieved the best accuracy of 84%.
Kim, Kyu-Wan;Sin, Hyun-Ju;Kim, Seon-Jin;Lee, Hyun Ah
한국어정보학회:학술대회논문집
/
2017.10a
/
pp.294-297
/
2017
SNS와 스마트기기의 발전으로 온라인을 통한 뉴스 배포가 용이해지면서 악의적으로 조작된 뉴스가 급속도로 생성되어 확산되고 있다. 뉴스 조작은 다양한 형태로 이루어지는데, 이 중에서 정상적인 기사 내에 광고나 낚시성 내용을 포함시켜 독자가 의도하지 않은 정보에 노출되게 하는 형태는 독자가 해당 내용을 진짜 뉴스로 받아들이기 쉽다. 본 논문에서는 뉴스 기사 내에 포함된 문단 중에서 부적합한 문단이 포함 되었는지를 판정하기 위한 방법을 제안한다. 제안하는 방식에서는 자연어 처리에 유용한 Convolutional Neural Network(CNN)모델 중 Word2Vec과 tf-idf 알고리즘, 로지스틱 회귀를 함께 이용하여 뉴스 부적합 문단을 검출한다. 본 시스템에서는 로지스틱 회귀를 이용하여 문단의 카테고리를 분류하여 본문의 카테고리 분포도를 계산하고 Word2Vec을 이용하여 문단간의 유사도를 계산한 결과에 가중치를 부여하여 부적합 문단을 검출한다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.373-377
/
2018
판례는 재판에 대한 선례로, 법적 결정에 대한 근거가 되는 핵심 단서 중 하나이다. 본 연구에서는 채권회수를 예측하는 서비스 구축을 위한 단서를 추출하기 위해 채권 회수 판례를 수집하여 이를 분석한다. 먼저 채권 회수 판례에 대한 기초 분석을 위하여, 채권 회수 사례와 비회수 사례를 각 20건씩 수집하여 분석하였으며, 이후 대법원 및 법률 지식베이스의 채권 관련 판례 12,457건을 수집하고 채권 회수 여부에 따라 가공하였다. 채권 회수 사례와 비회수 사례를 분류하기 위한 판례 내의 패턴을 분석하여 레이블링하고, 이를 자동 분류할 수 있는 Bidirectional LSTM 기반 심층학습 모델을 구성하여 학습하였다. 채권 관련 판례 가공 기준에 따라 네 가지의 데이터 셋을 구성하였으며, 각 데이터셋을 8:2의 비율로 나누어 실험한 결과, 검증 데이터에 대하여 F1 점수 89.82%의 우수한 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.