• 제목/요약/키워드: 한국어 음성처리

검색결과 265건 처리시간 0.022초

자동 전화번호 안내를 위한 한국어 대용량 음성 인식 시스템 (A Korean Large Vocabulary Speech Recognition System for Automatic Telephone Number Query Service)

  • 구준모;김형순;은종관
    • The Journal of the Acoustical Society of Korea
    • /
    • 제11권1E호
    • /
    • pp.86-97
    • /
    • 1992
  • 인식어휘수가 1160단어이며 자동 전화번호 안내에 사용될 수 있는 한국어 대용량 음성 인식 시 스템에 관하여 소개하였다. 이 시스템은 네 개의 부시스템으로 구성되어 있다. 첫 번째는 HMM 방식으 로 입력음성중의 단어를 인식하는 처리부에서 인식할 어휘를 제한하므로써 인식시간을 감축시켜 주는 인식 시간 감축부이다. 이 부시스템은 언어학적 정보뿐만 아니라 음향학적 정보도 이용한다. 마지막은 음성인식 시스템의 파라미터를 새로운 화자의 음성에 신속하게 적응시켜 주는 화자적응부이다. 마지막 부시스템은 VQ 적응방식과 스펙트럼 mapping 방식에 근거한 HMM 파라미터 적응방식을 이용한다. 또 한, 본 논문에서는 대용량 음성인식 시스템의 성능을 향상시키기 위한 최근의 연구결과들에 관하여 살 펴보았다. 이 연구들은 화자 독립 음성인식을 위한 음향학적 처리부와 인식 시간 감축부의 성능향상에 초점이 맞추어져 있다. 마지막으로 화자적응을 위한 새로운 연구결과라도 기술하였다.

  • PDF

한국어 연속음성 인식을 위한 형태론적 변형 처리 (Processing of Morphological Transformation for Korean Continuous Speech Recognition)

  • 정경석;박혁로
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.489-491
    • /
    • 2003
  • 한국어는 형태론적 변형 현상이 자주 일어나게 되어 최종적으로 음성인식의 성능에 졸지 않은 영향을 끼친다. 본 논문에서는 연속음성 인식의 성능 개선을 위해 형태론적 변형을 처리하는 방법을 제시하고 짧은 형태소를 결합하여 의사형태소를 추출하고자 한다. 이 방법은 음성인식의 성능 개선을 위하여 품사세트와 사전을 다시 정의하고 텍스트 정규화를 수행한다. 그리고 불규칙 용언 처리의 규칙을 작성하고 나머지 형태론적 변형현상은 에러 패턴을 분석하여 빈출 어휘 중심 및 다단계로 규칙 처리하였다. 마지막으로, 단음절 형태소들을 결합함으로써 최종적으로 원하는 의사형태소를 구할 수 있었다. 제안된 시스템은 오 인식률이 높은 단음절 형태소들을 결합하여 성능 향상이 기대됨은 물론, 형태론적 변형현상에서는. 9~10%의 높은 성능 향상을 가져올 수 있었다.

  • PDF

키워드 음성인식을 위한 음성합성 기반 자동 학습 기법 (A Automated Method for Training Keyword Spotter based on Speech Synthesis)

  • 임재봉;이종수;조용훈;백윤주
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.494-496
    • /
    • 2021
  • 최근 경량 딥러닝 기반 키워드 음성인식은 가전, 완구, 키오스크 등 다양한 응용에 음성 인터페이스를 쉽게 적용할 수 있는 기술로서 주목받고 있다. 키워드 음성인식은 일부 키워드만 인식 가능한 음성인식 기술로서 저성능 디바이스에서 활용 가능한 장점이 있다. 그러나 응용에 따라 필요한 키워드에 대하여 다시 음성데이터를 수집해야하고 이를 학습하여 모델을 새로 준비해야하는 단점이 있다. 따라서 본 연구에서는 음성데이터 수집 없이 음성합성을 통해 생성한 음성으로만 키워드 음성인식 모델을 학습하는 음성합성 기반 자동 학습 기법을 제안하였다. 생성한 음성데이터를 활용하고자하는 시도가 활발히 이루어지고 있으나, 기존 연구에서는 정확도를 유지하기 위하여 수집한 실제 음성데이터가 필요한 한계가 있다. 제안한 자동 학습 기법은 생성한 음성데이터에 대해 복합 데이터 증대 기법을 적용하여 실제 음성데이터 없이 키워드 음성인식의 정확도를 높였다. 제안한 기법에 대하여 상용 음성합성 서비스를 기반으로 수집한 한국어 키워드 데이터세트를 활용하여 성능평가를 진행하였다. 20개 한국어 키워드에 대해 실험한 결과, 제안한 기법을 적용하여 학습시킨 키워드 음성인식 모델의 정확도는 86.44%임을 확인하였다.

C-STAR 인터체인지 포멧을 이용한 다국어 대화체 번역시스템의 성능 (Performance of Multi-Lingual Spoken Language Translation System using C-STAR Interchange Format)

  • 최운천;박준;양재우
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.199-202
    • /
    • 1999
  • ETRI 통신단말연구부에서는 1999년 7월 22일에 C-STAR 회원국이 함께 참여하는 국제간 음성언어번역 시스템 공동 시연을 가졌다. 이 논문은 다국어 대화체 번역시스템인 음성언어번역 시스템의 국제간 공동 시연에 사용된 한국어 번역 시스템의 성능에 대해 기술한다. 번역 시스템의 성능은 전사문장을 이용한 영어, 일본어, 한국어의 번역 결과와 음성인식 결과를 이용한 각 언어의 번역 결과를 평가하여 얻었다. 그리고 세부 시스템의 성능을 알아보기 위해 음성인식의 결과로부터 C-STAR IF(interchange format)까지의 해석 시스템과 C-STAR IF로부터 한국어, 영어, 일본어로 생성해 내는 생성 시스템의 성능으로 나누어서 평가한다.

  • PDF

음소단위 TDNN에 기반한 한국어 연속 음성 인식을 위한 데이타 자동분할 (Automatic segmentation for continuous spoken Korean language recognition based on phonemic TDNN)

  • 박규봉;이근배;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1995년도 제7회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.30-34
    • /
    • 1995
  • 신경망을 이용하는 연속 음성 인식에서 학습이라 함은 인위적으로 분할된 음성 데이타를 토대로 진행되는 것이 지배적이었다. 그러나 분할된 음성데이타를 마련하기 위해서는 많은 시간과 노력, 숙련 등을 요구할 뿐만아니라 그 자체가 인식도메인의 변화나 확장을 어렵게 하는 하나의 요인 되기도 한다. 그래서 분할된 음성데이타의 사용을 가급적 피하고 그러면서도 성능을 떨어뜨리지 않는 신경망 학습법들이 나타나고 있다. 본 논문에서는 학습된 인식기를 이용하여 자동으로 한국어 음성데이타를 분할한 후 그 분할된 데이타를 이용하여 다시 인식기를 재학습시켜나가는 반복 과정을 소개하고자 한다. 여기에는 TDNN이 인식기로 사용되며 인식단위는 음소이다. 학습은 cross-validation 기법을 이용하여 제어된다.

  • PDF

한국어 음성 인식 시스템의 오류 유형 분류 및 분석 (Categorization and Analysis of Error Types in the Korean Speech Recognition System)

  • 손준영;박찬준;서재형;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.144-151
    • /
    • 2021
  • 딥러닝의 등장으로 자동 음성 인식 (Automatic Speech Recognition) 기술은 인간과 컴퓨터의 상호작용을 위한 가장 중요한 요소로 자리 잡았다. 그러나 아직까지 유사 발음 오류, 띄어쓰기 오류, 기호부착 오류 등과 같이 해결해야할 난제들이 많이 존재하며 오류 유형에 대한 명확한 기준 정립이 되고 있지 않은 실정이다. 이에 본 논문은 음성 인식 시스템의 오류 유형 분류 기준을 한국어에 특화되게 설계하였으며 이를 다양한 상용화 음성 인식 시스템을 바탕으로 질적 분석 및 오류 분류를 진행하였다. 실험의 경우 도메인과 어투에 따른 분석을 각각 진행하였으며 이를 통해 각 상용화 시스템별 강건한 부분과 약점인 부분을 파악할 수 있었다.

  • PDF

CSTAR-IF를 이용한 다국어 대화체 번역시스템 (Multi-Lingual Spoken Language Translation System using CSTAR-IF)

  • 최운천
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.159-163
    • /
    • 1998
  • 다국어 대화체 번역 시스템은 미국의 카네기 멜론 대학과 일본의 ATR 및 한국의 전자통신연구원 등이 가입한 CSTAR의 99년 국제간 음성언어번역 시스템 데모를 위한 한국어측 번역 시스템이다. CSTAR-IF는 국제간 데모를 위해 각 국의 시스템끼리 주고 받는 정보의 단위 혹은 형태로서, 중간언어 표현의 한 가지 방법으로 간단하면서도 단순한 표현으로 특정 영역 내에 나타나는 의미를 표현할 수 있도록 정의되었다. 다국어 번역 시스템은 크게 두 가지로 나누어진다. 하나는 한국어 음성인식 결과를 IF로 변환하는 해석 시스템이고, 다른 하나는 IF로부터 한국어 문장을 생성하여 음성으로 들려주는 생성 시스템이다. 한국어 해석 시스템은 현재 92%의 해석 성공률을, 생성 시스템은 98%의 생성 성공률을 보이고 있다.

  • PDF

단위 명사간 보-술 관계를 이용한 한국어 복합 명사의 문장 복원 (Restoring Functional Word and Noun-Verb Syntactic Relations for Korean Compound Noun Analysis)

  • 양성일;김영길;서영애;박은진;나동렬
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.694-695
    • /
    • 2007
  • 한국어 문장의 구성은 명사, 동사와 같은 내용어와 조사, 어미와 같은 기능어로 크게 나눌 수있다. 문장의 핵심적인 의미 전달은 내용어에 의해 이루어지며, 한국어 명사구의 경우 잦은 기능어의 생략으로 명사 나열에 의한 복합 명사가 발생된다. 이렇게 발생되는 복합 명사를 구성하는 단위 명사들은 일부 문장 성분을 생략시켜 발생된 것으로, 생략 성분의 복원에 의해 본래의 문장 형태를 추정할 수 있다. 한국어 복합 명사의 경우, 생략되는 문장 성분은 대부분 접사, 조사와 같은 기능어로 국한되며, 기능어의 복원은 단위 명사 간의 격 관계와 의미 관계를 분석하여 이루어질 수 있다. 본 논문에서는 단위 명사간의 보-술 관계를 이용하여 복합 명사를 구성하는 단위 명사 간의 의존 관계를 추정하고, 추정된 의존 관계에 의해 생략된 격조사와 용언화 접사를 복원하는 방법을 제안한다. 구조 분석에서 사용되는 의미 격틀에 의해 결정되는 격 관계는 격조사와 용언화 접사의 복원을 결정하며, 올바른 본래의 문장 표현 복원을 위해 관형격 조사와 관형격 어미를 비롯한 특별한 형태의 복원은 통계 정보와 휴리스틱 규칙으로 결정한다.

LCS알고리즘을 이용한 한-영 대역어 추출 연구 (A Study on extraction for Korean-English word pair by using LCS algorithm)

  • 박은진;양성일;김영길
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.707-709
    • /
    • 2007
  • 매일 생성되는 웹 신문에서 독자가 접해보지 못한 단어는 독자의 이해를 돕기 위하여 괄호를 사용한다. 괄호를 사용하여 표기된 웹 신문의 한국어-영어 대역쌍은 특정 기사에는 출현빈도가 낮지만 전체적으로 여러 신문의 기사를 봤을 때, 최소한 한번 이상 출현하게 된다. 즉, 괄호 안의 동일한 영어 용어 두 개 이상의 문장을 최장일치법 알고리즘에 적용하면 한국어 단어 경계를 자동으로 인식할 수 있다. 본 논문에서는 이런 웹 신문의 괄호 표기 특성을 이용하여 한-영 대역어쌍을 추출하는 방법을 제안한다. 웹 신문 기사 43,648 건에서 최대 2,087개의 한-영 대역어를 추출하였다. 3 개의 서로 다른 테스트 그룹으로 실험한 결과 최대 84.2%의 정확도를 보였다.

대역폭 변화에 따른 음성 인식률 비교연구 (A Comparative Study of Recognition Rate According to the Variance of Speech Bandwidth)

  • 손일현;도삼주;구명완
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1992년도 제4회 한글 및 한국어정보처리 학술대회
    • /
    • pp.193-199
    • /
    • 1992
  • 이 논문에서는 123개 단어의 한국어 음성에 대하여 음성의 대역폭 변화에 따른 인식률을 비교하였다. 인식률 비교실험을 위해 hidden Markov model과 음소와 유사한 131개의 한국어 subword 유니트를 사용한 화자독립 격리단어 인식 시스팀을 사용하였다. 이 실험은 대역폭이 각각 0 - 4.5kHz 및 0.3 - 3.3kHz인 두가지 종류의 음성 데이타베이스를 사용하였다. 훈련과정에서 corrective training의 반복회수를 2로 하고 state transition duration 정보를 사용하였을 때, 0 - 4.5kHz 와 0.3 - 3.3kHz 대역폭에 대해 각각 98.8 % 및 98.2 % 의 최고 인식률을 얻었다. 이로부터 전화대역폭에서도 음성인식률은 크게 저하되지 않음을 알 수 있다.

  • PDF