• Title/Summary/Keyword: 한국어 음성처리

Search Result 265, Processing Time 0.025 seconds

Noise Reduction for Korean Connected Digit Recognition through Telephone Channel (전화망 환경에서 한국어 숫자음 인식을 위한 잡음처리)

  • Kim Kyuhong;Kim Hoirin
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.211-214
    • /
    • 2003
  • 일반적으로 음성 인식에서의 성능은 잡음의 영향으로 인하여 저하된다. 전화망을 통한 한국어 연속 숫자음 인식은 음성인식 분야에 있어서 어려운 영역에 속하는데, 이는 조음 현상으로 인한 인식률 저하되는 점과 전화망 채널의 영향으로 인하여 스펙트럼 포락이 왜곡되며 음성신호의 대역폭이 제한되기 때문이다. 본 논문에서는 잡음의 영향을 줄이기 위하여, 2WF(2-stage Wiener Filter) 와 SWP (SNR-dependent Waveform Processing) 그리고 CMN(Cepstrum Mean Normalization)을 사용하였다. 2WF는 음성 신호의 포만트 구조를 적게 왜곡시키면서 전체적인 가산잡음 뿐만 아니라 동적 가산잡음도 줄여준다. SWP는 음성파형에서 SNR값이 상대적으로 큰 부분을 강조하여 전체적인 SNR을 향상시킬 수 있다. 또한, CMN은 특징벡터로부터 채널잡음의 영향을 정규화하여 음성 인식 성능을 향상시킨다. 이러한 방법들을 전화망 한국어 연속 숫자음 DB를 이용하여 실험한 결과, 음성신호의 왜곡을 최소화하면서 잡음의 영향을 줄여 전화망에서의 숫자음 인식 성능을 향상시킬 수 있었다.

  • PDF

Concept-based Translation System in the Korean Spoken Language Translation System (한국어 대화체 음성언어 번역시스템에서의 개념기반 번역시스템)

  • Choi, Un-Cheon;Han, Nam-Yong;Kim, Jae-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.8
    • /
    • pp.2025-2037
    • /
    • 1997
  • The concept-based translation system, which is a part of the Korean spoken language translation system, translates spoken utterances from Korean speech recognizer into one of English, Japanese and Korean in a travel planning task. Our system regulates semantic rather than the syntactic category in order to process the spontaneous speech which tends to be regarded as the one ungrammatical and subject to recognition errors. Utterances are parsed into concept structures, and the generation module produces the sentence of the specified target language. We have developed a token-separator using base-words and an automobile grammar corrector for Korean processing. We have also developed postprocessors for each target language in order to improve the readability of the generation results.

  • PDF

Error Correction for Korean Speech Recognition using a LSTM-based Sequence-to-Sequence Model

  • Jin, Hye-won;Lee, A-Hyeon;Chae, Ye-Jin;Park, Su-Hyun;Kang, Yu-Jin;Lee, Soowon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.1-7
    • /
    • 2021
  • Recently, since most of the research on correcting speech recognition errors is based on English, there is not enough research on Korean speech recognition. Compared to English speech recognition, however, Korean speech recognition has many errors due to the linguistic characteristics of Korean language, such as Korean Fortis and Korean Liaison, thus research on Korean speech recognition is needed. Furthermore, earlier works primarily focused on editorial distance algorithms and syllable restoration rules, making it difficult to correct the error types of Korean Fortis and Korean Liaison. In this paper, we propose a context-sensitive post-processing model of speech recognition using a LSTM-based sequence-to-sequence model and Bahdanau attention mechanism to correct Korean speech recognition errors caused by the pronunciation. Experiments showed that by using the model, the speech recognition performance was improved from 64% to 77% for Fortis, 74% to 90% for Liaison, and from 69% to 84% for average recognition than before. Based on the results, it seems possible to apply the proposed model to real-world applications based on speech recognition.

A LECTURE SEARCH SYSTEM USING RELEVANT INFORMATION AND SPEECH TRANSCRIPTION (보조 자료와 음성 전사를 사용한 강의 검색 시스템)

  • Lee, Donghyeon;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.140-144
    • /
    • 2008
  • 음성 오디오 검색 시스템을 구축하기 위해서는 몇 가지 과정이 필요하다. 첫 번째 과정이 음성 인식기를 이용하여 음성 오디오를 텍스트 형태로 표현하는 것이다. 하지만, 음성 인식기에서 수반되는 음성 인식 오류를 피할 수는 없다. 음성 인식 오류를 최소화하기 위해서 음성 인식 출력의 lattice를 색인(index)해야 하는데, 보다 효과적인 처리를 위하여 압축된 형태를 사용한다. 본 연구에서는 특별히 한국어 강의를 대상으로 검색 시스템을 구축했다. 강의에서는 특별히 관련된 자료를 쉽게 구할 수 있는 데, 이런 자료를 언어 모델에 이용하여 음성 인식 성능을 향상 시킬 수 있다. 또한, 강의 자료를 이용한 추가 색인 테이블(index table)을 생성하여 검색 성능 향상에 도움을 준다. 실험에서 고등학교 과정 수학 강의 동영상을 이용하여 자동화된 강의 검색 시스템을 구축하고, 보조 자료를 이용해 성능을 향상 시키는 것을 보인다.

  • PDF

Declaritive Morphological Analysis of Spoken Korean Recognition Results (한국어 음성인식 결과의 선언적 형태소 분석)

  • Lee, Won-Il;Lee, Geun-Bae;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.322-325
    • /
    • 1994
  • 한국어 음성인식 결과의 형태소 분석은 한국어 문서의 분석보다 더 많은 문제점을 가지고 있다. 음성 인식의 낮은 인식률, 여러 개의 후보를 제시하는 경우의 지수적 가능성, 말하는 단위와 띄어쓰기 단위의 불일치, 형태소 안에서 그리고 형태소와 형태소 사이에서 일어나는 음운 변동등이 음성 인식 결과를 분석할 때 추가되는 문제점이다. 본 논문에서는 한 음소에 대해 여러 개의 후보를 제시하는 음성 인식 결과에 대하여, TRIE 인덱싱, 어절 간의 접속을 위한 확장된 접속 검사, 음운 변동을 고려한 사전구성, 음운 접속 정보를 사용하는 형태소 분석 방법을 제안한다.

  • PDF

한국어 문자음성 변환시스템 : 가라사대

  • 권철홍;정원국;구준모;김형순
    • Information and Communications Magazine
    • /
    • v.11 no.9
    • /
    • pp.17-25
    • /
    • 1994
  • 본 논문에서는 국내 최초의 상용 한국어 무제한 음성합성 시스템인 가라사대에 관하여 기술한다. 우선, 음성합성 과정의 각 단계에 이용된 알고리즘을 설명한다. 즉, 문장의 분석을 위해서는 문장 전처리, parsing 발음표기 변환 등의 규칙에 의하여 순차적으로 수행된다. 문장 분석후에는 강세, 억양과 지속시간 등의 운율을 제어하는 요소가 계산되고 음성신호는 확장된 diphone 단위의 음성신호를 연결하여 생성된다. 다음으로 가라사대 하드웨어 및 소프트웨어의 구성에 관하여 서술한다. 범용의 디지탈 신호처리 IC를 이용하여 구현한 하드웨어와 가라사대의 소프트웨어뿐만 아니라 PC내의 소프트웨어의 구성과 역할에 관하여 살펴본다.

  • PDF

Attention based multimodal model for Korean speech recognition post-editing (한국어 음성인식 후처리를 위한 주의집중 기반의 멀티모달 모델)

  • Jeong, Yeong-Seok;Oh, Byoung-Doo;Heo, Tak-Sung;Choi, Jeong-Myeong;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.145-150
    • /
    • 2020
  • 최근 음성인식 분야에서 신경망 기반의 종단간 모델이 제안되고 있다. 해당 모델들은 음성을 직접 입력받아 전사된 문장을 생성한다. 음성을 직접 입력받는 모델의 특성상 데이터의 품질이 모델의 성능에 많은 영향을 준다. 본 논문에서는 이러한 종단간 모델의 문제점을 해결하고자 음성인식 결과를 후처리하기 위한 멀티모달 기반 모델을 제안한다. 제안 모델은 음성과 전사된 문장을 입력 받는다. 입력된 각각의 데이터는 Encoder를 통해 자질을 추출하고 주의집중 메커니즘을 통해 Decoder로 추출된 정보를 전달한다. Decoder에서는 전달받은 주의집중 메커니즘의 결과를 바탕으로 후처리된 토큰을 생성한다. 본 논문에서는 후처리 모델의 성능을 평가하기 위해 word error rate를 사용했으며, 실험결과 Google cloud speech to text모델에 비해 word error rate가 8% 감소한 것을 확인했다.

  • PDF

Implementation to phonological alteration module for a korean text-to-speech (한국어 Text-to-Speech 변환을 위한 음운 변동 시스템에 관한 연구)

  • Park, Su-Hyun;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.35-38
    • /
    • 1995
  • Text-to-speech 시스템은 텍스트를 입력으로 받아 텍스트와 일치하는 음성을 출력하는 시스템으로, 인간이 자신의 모국어로 텍스트를 읽는 것과 비슷한 수준의 음성을 출력하는 데 목적이 있다. 한국어의 각 단어들은 한 단어 내에 있는 형태소들 사이에 음운 변동 현상을 일으켜 쓰여진 형태와 다르게 발음된다. 그러므로 한국어 텍스트를 자연스럽게 발음하기 위해서는 음운 변동 현상을 효율적으로 처리할 수 있어야 한다. 한국어에서 음운 변동을 일으키는 규칙은 여러 가지이고, 정확한 발음을 위해서는 이러한 규칙들이 차례대로 적용되어져야 한다. 따라서 본 논문에서는 이러한 한국어의 발음상의 특성을 고려하여 two-level 모델에 기반한 음운 변동 시스템을 구현한다.

  • PDF

A Study on Korean Speech Animation Generation Employing Deep Learning (딥러닝을 활용한 한국어 스피치 애니메이션 생성에 관한 고찰)

  • Suk Chan Kang;Dong Ju Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.10
    • /
    • pp.461-470
    • /
    • 2023
  • While speech animation generation employing deep learning has been actively researched for English, there has been no prior work for Korean. Given the fact, this paper for the very first time employs supervised deep learning to generate Korean speech animation. By doing so, we find out the significant effect of deep learning being able to make speech animation research come down to speech recognition research which is the predominating technique. Also, we study the way to make best use of the effect for Korean speech animation generation. The effect can contribute to efficiently and efficaciously revitalizing the recently inactive Korean speech animation research, by clarifying the top priority research target. This paper performs this process: (i) it chooses blendshape animation technique, (ii) implements the deep-learning model in the master-servant pipeline of the automatic speech recognition (ASR) module and the facial action coding (FAC) module, (iii) makes Korean speech facial motion capture dataset, (iv) prepares two comparison deep learning models (one model adopts the English ASR module, the other model adopts the Korean ASR module, however both models adopt the same basic structure for their FAC modules), and (v) train the FAC modules of both models dependently on their ASR modules. The user study demonstrates that the model which adopts the Korean ASR module and dependently trains its FAC module (getting 4.2/5.0 points) generates decisively much more natural Korean speech animations than the model which adopts the English ASR module and dependently trains its FAC module (getting 2.7/5.0 points). The result confirms the aforementioned effect showing that the quality of the Korean speech animation comes down to the accuracy of Korean ASR.

Enhancing Korean Alphabet Unit Speech Recognition with Neural Network-Based Alphabet Merging Methodology (한국어 자모단위 음성인식 결과 후보정을 위한 신경망 기반 자모 병합 방법론)

  • Solee Im;Wonjun Lee;Gary Geunbae Lee;Yunsu Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.659-663
    • /
    • 2023
  • 이 논문은 한국어 음성인식 성능을 개선하고자 기존 음성인식 과정을 자모단위 음성인식 모델과 신경망 기반 자모 병합 모델 총 두 단계로 구성하였다. 한국어는 조합어 특성상 음성 인식에 필요한 음절 단위가 약 2900자에 이른다. 이는 학습 데이터셋에 자주 등장하지 않는 음절에 대해서 음성인식 성능을 저하시키고, 학습 비용을 높이는 단점이 있다. 이를 개선하고자 음절 단위의 인식이 아닌 51가지 자모 단위(ㄱ-ㅎ, ㅏ-ㅞ)의 음성인식을 수행한 후 자모 단위 인식 결과를 음절단위의 한글로 병합하는 과정을 수행할 수 있다[1]. 자모단위 인식결과는 초성, 중성, 종성을 고려하면 규칙 기반의 병합이 가능하다. 하지만 음성인식 결과에 잘못인식된 자모가 포함되어 있다면 최종 병합 결과에 오류를 생성하고 만다. 이를 해결하고자 신경망 기반의 자모 병합 모델을 제시한다. 자모 병합 모델은 분리되어 있는 자모단위의 입력을 완성된 한글 문장으로 변환하는 작업을 수행하고, 이 과정에서 음성인식 결과로 잘못인식된 자모에 대해서도 올바른 한글 문장으로 변환하는 오류 수정이 가능하다. 본 연구는 한국어 음성인식 말뭉치 KsponSpeech를 활용하여 실험을 진행하였고, 음성인식 모델로 Wav2Vec2.0 모델을 활용하였다. 기존 규칙 기반의 자모 병합 방법에 비해 제시하는 자모 병합 모델이 상대적 음절단위오류율(Character Error Rate, CER) 17.2% 와 단어단위오류율(Word Error Rate, WER) 13.1% 향상을 확인할 수 있었다.

  • PDF