일반적으로 음성 인식에서의 성능은 잡음의 영향으로 인하여 저하된다. 전화망을 통한 한국어 연속 숫자음 인식은 음성인식 분야에 있어서 어려운 영역에 속하는데, 이는 조음 현상으로 인한 인식률 저하되는 점과 전화망 채널의 영향으로 인하여 스펙트럼 포락이 왜곡되며 음성신호의 대역폭이 제한되기 때문이다. 본 논문에서는 잡음의 영향을 줄이기 위하여, 2WF(2-stage Wiener Filter) 와 SWP (SNR-dependent Waveform Processing) 그리고 CMN(Cepstrum Mean Normalization)을 사용하였다. 2WF는 음성 신호의 포만트 구조를 적게 왜곡시키면서 전체적인 가산잡음 뿐만 아니라 동적 가산잡음도 줄여준다. SWP는 음성파형에서 SNR값이 상대적으로 큰 부분을 강조하여 전체적인 SNR을 향상시킬 수 있다. 또한, CMN은 특징벡터로부터 채널잡음의 영향을 정규화하여 음성 인식 성능을 향상시킨다. 이러한 방법들을 전화망 한국어 연속 숫자음 DB를 이용하여 실험한 결과, 음성신호의 왜곡을 최소화하면서 잡음의 영향을 줄여 전화망에서의 숫자음 인식 성능을 향상시킬 수 있었다.
The Transactions of the Korea Information Processing Society
/
v.4
no.8
/
pp.2025-2037
/
1997
The concept-based translation system, which is a part of the Korean spoken language translation system, translates spoken utterances from Korean speech recognizer into one of English, Japanese and Korean in a travel planning task. Our system regulates semantic rather than the syntactic category in order to process the spontaneous speech which tends to be regarded as the one ungrammatical and subject to recognition errors. Utterances are parsed into concept structures, and the generation module produces the sentence of the specified target language. We have developed a token-separator using base-words and an automobile grammar corrector for Korean processing. We have also developed postprocessors for each target language in order to improve the readability of the generation results.
Journal of the Korea Society of Computer and Information
/
v.26
no.10
/
pp.1-7
/
2021
Recently, since most of the research on correcting speech recognition errors is based on English, there is not enough research on Korean speech recognition. Compared to English speech recognition, however, Korean speech recognition has many errors due to the linguistic characteristics of Korean language, such as Korean Fortis and Korean Liaison, thus research on Korean speech recognition is needed. Furthermore, earlier works primarily focused on editorial distance algorithms and syllable restoration rules, making it difficult to correct the error types of Korean Fortis and Korean Liaison. In this paper, we propose a context-sensitive post-processing model of speech recognition using a LSTM-based sequence-to-sequence model and Bahdanau attention mechanism to correct Korean speech recognition errors caused by the pronunciation. Experiments showed that by using the model, the speech recognition performance was improved from 64% to 77% for Fortis, 74% to 90% for Liaison, and from 69% to 84% for average recognition than before. Based on the results, it seems possible to apply the proposed model to real-world applications based on speech recognition.
Annual Conference on Human and Language Technology
/
2008.10a
/
pp.140-144
/
2008
음성 오디오 검색 시스템을 구축하기 위해서는 몇 가지 과정이 필요하다. 첫 번째 과정이 음성 인식기를 이용하여 음성 오디오를 텍스트 형태로 표현하는 것이다. 하지만, 음성 인식기에서 수반되는 음성 인식 오류를 피할 수는 없다. 음성 인식 오류를 최소화하기 위해서 음성 인식 출력의 lattice를 색인(index)해야 하는데, 보다 효과적인 처리를 위하여 압축된 형태를 사용한다. 본 연구에서는 특별히 한국어 강의를 대상으로 검색 시스템을 구축했다. 강의에서는 특별히 관련된 자료를 쉽게 구할 수 있는 데, 이런 자료를 언어 모델에 이용하여 음성 인식 성능을 향상 시킬 수 있다. 또한, 강의 자료를 이용한 추가 색인 테이블(index table)을 생성하여 검색 성능 향상에 도움을 준다. 실험에서 고등학교 과정 수학 강의 동영상을 이용하여 자동화된 강의 검색 시스템을 구축하고, 보조 자료를 이용해 성능을 향상 시키는 것을 보인다.
Annual Conference on Human and Language Technology
/
1994.11a
/
pp.322-325
/
1994
한국어 음성인식 결과의 형태소 분석은 한국어 문서의 분석보다 더 많은 문제점을 가지고 있다. 음성 인식의 낮은 인식률, 여러 개의 후보를 제시하는 경우의 지수적 가능성, 말하는 단위와 띄어쓰기 단위의 불일치, 형태소 안에서 그리고 형태소와 형태소 사이에서 일어나는 음운 변동등이 음성 인식 결과를 분석할 때 추가되는 문제점이다. 본 논문에서는 한 음소에 대해 여러 개의 후보를 제시하는 음성 인식 결과에 대하여, TRIE 인덱싱, 어절 간의 접속을 위한 확장된 접속 검사, 음운 변동을 고려한 사전구성, 음운 접속 정보를 사용하는 형태소 분석 방법을 제안한다.
본 논문에서는 국내 최초의 상용 한국어 무제한 음성합성 시스템인 가라사대에 관하여 기술한다. 우선, 음성합성 과정의 각 단계에 이용된 알고리즘을 설명한다. 즉, 문장의 분석을 위해서는 문장 전처리, parsing 발음표기 변환 등의 규칙에 의하여 순차적으로 수행된다. 문장 분석후에는 강세, 억양과 지속시간 등의 운율을 제어하는 요소가 계산되고 음성신호는 확장된 diphone 단위의 음성신호를 연결하여 생성된다. 다음으로 가라사대 하드웨어 및 소프트웨어의 구성에 관하여 서술한다. 범용의 디지탈 신호처리 IC를 이용하여 구현한 하드웨어와 가라사대의 소프트웨어뿐만 아니라 PC내의 소프트웨어의 구성과 역할에 관하여 살펴본다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.145-150
/
2020
최근 음성인식 분야에서 신경망 기반의 종단간 모델이 제안되고 있다. 해당 모델들은 음성을 직접 입력받아 전사된 문장을 생성한다. 음성을 직접 입력받는 모델의 특성상 데이터의 품질이 모델의 성능에 많은 영향을 준다. 본 논문에서는 이러한 종단간 모델의 문제점을 해결하고자 음성인식 결과를 후처리하기 위한 멀티모달 기반 모델을 제안한다. 제안 모델은 음성과 전사된 문장을 입력 받는다. 입력된 각각의 데이터는 Encoder를 통해 자질을 추출하고 주의집중 메커니즘을 통해 Decoder로 추출된 정보를 전달한다. Decoder에서는 전달받은 주의집중 메커니즘의 결과를 바탕으로 후처리된 토큰을 생성한다. 본 논문에서는 후처리 모델의 성능을 평가하기 위해 word error rate를 사용했으며, 실험결과 Google cloud speech to text모델에 비해 word error rate가 8% 감소한 것을 확인했다.
Annual Conference on Human and Language Technology
/
1995.10a
/
pp.35-38
/
1995
Text-to-speech 시스템은 텍스트를 입력으로 받아 텍스트와 일치하는 음성을 출력하는 시스템으로, 인간이 자신의 모국어로 텍스트를 읽는 것과 비슷한 수준의 음성을 출력하는 데 목적이 있다. 한국어의 각 단어들은 한 단어 내에 있는 형태소들 사이에 음운 변동 현상을 일으켜 쓰여진 형태와 다르게 발음된다. 그러므로 한국어 텍스트를 자연스럽게 발음하기 위해서는 음운 변동 현상을 효율적으로 처리할 수 있어야 한다. 한국어에서 음운 변동을 일으키는 규칙은 여러 가지이고, 정확한 발음을 위해서는 이러한 규칙들이 차례대로 적용되어져야 한다. 따라서 본 논문에서는 이러한 한국어의 발음상의 특성을 고려하여 two-level 모델에 기반한 음운 변동 시스템을 구현한다.
KIPS Transactions on Software and Data Engineering
/
v.12
no.10
/
pp.461-470
/
2023
While speech animation generation employing deep learning has been actively researched for English, there has been no prior work for Korean. Given the fact, this paper for the very first time employs supervised deep learning to generate Korean speech animation. By doing so, we find out the significant effect of deep learning being able to make speech animation research come down to speech recognition research which is the predominating technique. Also, we study the way to make best use of the effect for Korean speech animation generation. The effect can contribute to efficiently and efficaciously revitalizing the recently inactive Korean speech animation research, by clarifying the top priority research target. This paper performs this process: (i) it chooses blendshape animation technique, (ii) implements the deep-learning model in the master-servant pipeline of the automatic speech recognition (ASR) module and the facial action coding (FAC) module, (iii) makes Korean speech facial motion capture dataset, (iv) prepares two comparison deep learning models (one model adopts the English ASR module, the other model adopts the Korean ASR module, however both models adopt the same basic structure for their FAC modules), and (v) train the FAC modules of both models dependently on their ASR modules. The user study demonstrates that the model which adopts the Korean ASR module and dependently trains its FAC module (getting 4.2/5.0 points) generates decisively much more natural Korean speech animations than the model which adopts the English ASR module and dependently trains its FAC module (getting 2.7/5.0 points). The result confirms the aforementioned effect showing that the quality of the Korean speech animation comes down to the accuracy of Korean ASR.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.659-663
/
2023
이 논문은 한국어 음성인식 성능을 개선하고자 기존 음성인식 과정을 자모단위 음성인식 모델과 신경망 기반 자모 병합 모델 총 두 단계로 구성하였다. 한국어는 조합어 특성상 음성 인식에 필요한 음절 단위가 약 2900자에 이른다. 이는 학습 데이터셋에 자주 등장하지 않는 음절에 대해서 음성인식 성능을 저하시키고, 학습 비용을 높이는 단점이 있다. 이를 개선하고자 음절 단위의 인식이 아닌 51가지 자모 단위(ㄱ-ㅎ, ㅏ-ㅞ)의 음성인식을 수행한 후 자모 단위 인식 결과를 음절단위의 한글로 병합하는 과정을 수행할 수 있다[1]. 자모단위 인식결과는 초성, 중성, 종성을 고려하면 규칙 기반의 병합이 가능하다. 하지만 음성인식 결과에 잘못인식된 자모가 포함되어 있다면 최종 병합 결과에 오류를 생성하고 만다. 이를 해결하고자 신경망 기반의 자모 병합 모델을 제시한다. 자모 병합 모델은 분리되어 있는 자모단위의 입력을 완성된 한글 문장으로 변환하는 작업을 수행하고, 이 과정에서 음성인식 결과로 잘못인식된 자모에 대해서도 올바른 한글 문장으로 변환하는 오류 수정이 가능하다. 본 연구는 한국어 음성인식 말뭉치 KsponSpeech를 활용하여 실험을 진행하였고, 음성인식 모델로 Wav2Vec2.0 모델을 활용하였다. 기존 규칙 기반의 자모 병합 방법에 비해 제시하는 자모 병합 모델이 상대적 음절단위오류율(Character Error Rate, CER) 17.2% 와 단어단위오류율(Word Error Rate, WER) 13.1% 향상을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.