Annual Conference on Human and Language Technology
/
2007.10a
/
pp.269-275
/
2007
텔레비전 뉴스에서 부제목을 만들거나, 문장을 PDA나 휴대폰과 같은 작은 화면에 출력하고 싶은 경우, 가능한 방법은 두 가지가 있다. 첫번째는 사람에 의해 직접 만드는 방식이다. 두번째는 자동화된 문장 요약 시스템을 사용하는 방법이다. 따라서 문장 요약 알고리즘은 그 중요성이 계속해서 커지고 있다. 본 논문에서는 구문 트리의 서브 트리가 변화할 수 있는 규칙을 제시하는 방법에 (1)공기 정보와 (2) 문법적으로 올바른 구조를 유지하기 위해 핵심적인 부분(주요 문법 구조) 및 같이 요약되어야 할 절을 표시하는 휴리스틱, (3)주어진 문장이 포함된 글의 제목 정보를 추가로 사용하여 문장 요약을 실행하였다. 본 시스템의 결과와 기존의 요약 방식을 비교하는 실험을 분야 전공자들에 의한 주관적 평가로 수행한 결과, 본 시스템의 알고리즘이 기존에 사용되던 구문서브트리 변환 방법보다 중요한 부분 및 문법적으로 올바른 부분을 많이 유지하는 요약임을 확인하였다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.487-492
/
2018
4차산업 혁명의 여파로 국내에서는 다양한 분야에 인공지능과 빅데이터 기술을 활용하여 이전에 시행 중인 다양한 서비스 분야에 기술적 접목과 보완을 시도하고 있다. 특히 금융권에서 자금을 빌린 기업들을 대상으로 여신 안정성을 확보하고 선제적인 대응을 위해 온라인 뉴스기사들과 SNS 데이터 등을 이용하여 부실가능성을 예측하고 실제 업무에 도입하려는 시도들이 국내 주요 은행들을 중심으로 활발히 진행 중이다. 우리는 국내의 국책은행에서 수행한 비정형 데이터 기반의 기업의 부실징후 예측 시스템 개발 과정에서 시도된 다양한 분석 방법과 결과 그리고 과정 중에 발생한 문제점들에 관해 기술하고 관련 이슈들에 관하여 다룬다. 결과적으로 본 논문은 레이블이 없는 대량의 기사들에 레이블을 달기 위한 자동 태거(tagger) 개발과 뉴스 기사 예측 결과로부터 부실 가능성을 예측하기 위한 모델 및 성능 면에서 기사 예측 정확도 92%(AUC 0.96) 및 부실 가능성 기업 예측에서도 정형 데이터 분석결과에 견줄만한 성과를 이루었고 이에 관해 보고한다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.115-119
/
2018
다중 문서 제목 추출은 하나의 주제를 가지는 다중 문서에 대한 제목을 추출하는 것을 말한다. 일반적으로 다중 문서 제목 추출에서는 다중 문서 집합을 단일 문서로 본 다음 키워드를 제목 후보군으로 추출하고, 추출된 후보를 나열하는 형식의 연구가 많이 진행되어져 왔다. 하지만 이러한 방법은 크게 두 가지의 한계점을 가지고 있다. 먼저, 다중 문서를 단순히 하나의 문서로 보는 방법은 전체적인 주제를 반영한 제목을 추출하기 어렵다는 문제점이 있다. 다음으로, 키워드를 조합하는 형식의 방법은 키워드의 단위를 찾는 방법에 따라 추출된 제목이 자연스럽지 못하다는 한계점이 있다. 따라서 본 논문에서는 이 한계점들을 보완하기 위하여 단어 관련성 추정과 Byte Pair Encoding을 이용한 요약 기반의 다중 뉴스 기사 제목 추출 방법을 제안한다. 평가를 위해서는 자동으로 군집된 총 12개의 주제에 대한 다중 뉴스 기사 집합을 사용하였으며 전문 교육을 받은 연구원들이 정성평가를 진행하여 5점 만점 기준 평균 3.68점을 얻었다.
Seo, Jaehyung;Oh, Dongsuk;Eo, Sugyeong;Park, Sungjin;Lim, Heuiseok
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.495-500
/
2020
뉴스 기사는 반드시 객관적이고 넓은 시각으로 정보를 전달하지 않는다. 따라서 뉴스 기사를 기존의 추천 시스템과 같이 개인의 관심사나 사적 정보를 바탕으로 선별적으로 추천하는 것은 바람직하지 않다. 본 논문에서는 최대한 객관적으로 다양한 시각에서 비슷한 사건과 인물에 대해서 판단할 수 있도록 유사도 기반의 기사 추천 모델을 제시한다. 길이가 긴 문서 사이의 유사도를 측정하기 위해 GPT2 [1]언어 모델을 활용했다. 이 과정에서 단방향 디코더 모델인 GPT2 [1]의 단점을 추가 학습으로 개선했으며, 저장 공간의 효율과 핵심 문단 추출을 위해 BM25 [2]함수를 사용했다. 그리고 준 지도 학습 [3]을 통해 유사도 레이블링이 되어있지 않은 최신 뉴스 기사에 대해서도 자가 학습을 진행했으며, 이와 함께 길이가 긴 문단에 대해서도 효과적으로 학습할 수 있도록 문장 길이를 기준으로 3개의 단계로 나누어진 커리큘럼 학습 [4]방식을 적용했다.
The boycott of Japanese products triggered by Japan's economic retaliation has heated up the Republic of Korea. This study examined the factors affecting the boycott participation intention in 217 college students and ordinary people in their 20s and 30s. The results of the study showed that perceived egregiousness, self-efficacy, and subjective norm had a positive effect on boycott participation intention, and perceived egregiousness had an indirect effect on boycott participation intention through anger. In addition, these overall impacts were moderated by online and SNS news usage. This study is significant in providing academic and practical implications for understanding boycott phenomena by verifying various influencing factors on consumer boycott intentions and comprehensively reviewing the mediating effect of anger and the moderating effect of online and SNS news usage.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.41
no.3
/
pp.115-124
/
2004
The content-based retrieval using low-level features can hardly provide the retrieval result that corresponds with conceptual demand of user for intelligent retrieval. Video includes not only moving picture data, but also audio or closed-caption data. Knowledge-based video retrieval is able to provide the retrieval result that corresponds with conceptual demand of user because of performing automatic indexing with such a variety data. In this paper, we present the knowledge-based video retrieval system using Korean closed-caption. The closed-caption is indexed by Korean keyword extraction system including the morphological analysis process. As a result, we are able to retrieve the video by using keyword from the indexing database. In the experiment, we have applied the proposed method to news video with closed-caption generated by Korean stenographic system, and have empirically confirmed that the proposed method provides the retrieval result that corresponds with more meaningful conceptual demand of user.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.7
no.9
/
pp.317-325
/
2017
In this paper, we try to classify Korean hedge sentences, which are regarded as not important since they express uncertainties or personal assumptions. Through previous researches to English language, we found dependency information of words has been one of important features in hedge classification, but not used in Korean researches. Additionally, we found that word embedding vectors include the word usage information. We assume that the word usage information could somehow represent the dependency information. Therefore, we utilized word embedding and neural networks in hedge sentence classification. We used more than one and half million sentences as word embedding dataset and also manually constructed 12,517-sentence hedge classification dataset obtained from online news. We used SVM and CRF as our baseline systems and the proposed system outperformed SVM by 7.2%p and also CRF by 1.2%p. This indicates that word usage information has positive impacts on Korean hedge classification.
After COVID-19, communication through online platforms has increased, leading to an accumulation of massive amounts of conversational text data. With the growing importance of summarizing this text data to extract meaningful information, there has been active research on deep learning-based abstractive summarization. However, conversational data, compared to structured texts like news articles, often contains missing or transformed information, necessitating consideration from multiple perspectives due to its unique characteristics. In particular, vocabulary omissions and unrelated expressions in the conversation can hinder effective summarization. Therefore, in this study, we restructured by considering the characteristics of Korean conversational data, fine-tuning a pre-trained text summarization model based on KoBART, and improved conversation data summary perfomance through a refining operation to remove redundant elements from the summary. By restructuring the sentences based on the order of utterances and extracting a central speaker, we combined methods to restructure the conversation around them. As a result, there was about a 4 point improvement in the Rouge-1 score. This study has demonstrated the significance of our conversation restructuring approach, which considers the characteristics of dialogue, in enhancing Korean conversation summarization performance.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.76-81
/
2017
외국어로 구성된 용어를 발음에 기반하여 자국의 언어로 표기하는 것을 음차 표기라 한다. 국가 간의 경계가 허물어짐에 따라, 외국어에 기원을 두는 용어를 설명하기 위해 뉴스 등 다양한 웹 문서에서는 동일한 발음을 가지는 외국어 표기와 한국어 표기를 혼용하여 사용하고 있다. 이에 좋은 검색 결과를 가져오기 위해서는 외국어 표기와 더불어 사람들이 많이 사용하는 다양한 음차 표기를 함께 검색에 활용하는 것이 중요하다. 음차 표기 모델과 음차 표기 대역 쌍 추출을 통해 음차 표현을 생성하는 기존 방법 대신, 본 논문에서는 신뢰할 수 있는 다양한 음차 표현을 찾기 위해 문서에서 음차 표기 후보를 찾고, 이 음차 표기 후보가 정확한 표기인지 판별하는 방식을 제안한다. 다양한 딥러닝 모델을 비교, 검토하여 최종적으로 음차 표기 대역 쌍 판별에 특화된 모델인 Distance LSTM-CNN 모델을 제안하며, 제안하는 모델의 Batch Size 영향을 줄이고 학습 시 수렴 속도 개선을 위해 Layer Normalization을 적용하는 방법을 보인다.
Park, Ho-Min;Kim, Chang-Hyun;Noh, Kyung-Mok;Cheon, Min-Ah;Kim, Jae-Hoon
한국어정보학회:학술대회논문집
/
2016.10a
/
pp.243-245
/
2016
광학 문자 인식(OCR)을 통해 문서의 글자를 인식할 때 띄어쓰기 오류가 발생한다. 본 논문에서는 이를 해결하기 위해 OCR의 후처리 과정으로 동적 프로그래밍을 이용한 분절(Segmentation) 방식의 띄어쓰기 오류 교정 시스템을 제안한다. 제안하는 시스템의 띄어쓰기 오류 교정 과정은 다음과 같다. 첫째, 띄어쓰기 오류가 있다고 분류된 어절 내의 공백을 모두 제거한다. 둘째, 공백이 제거된 문자열을 동적 프로그래밍을 이용한 분절로 입력 문자열에 대하여 가능한 모든 띄어쓰기 후보들을 찾는다. 셋째, 뉴스 기사 말뭉치와 그 말뭉치에 기반을 둔 띄어쓰기 확률 모델을 참조하여 각 후보의 띄어쓰기 확률을 계산한다. 마지막으로 띄어쓰기 후보들 중 확률이 가장 높은 후보를 교정 결과로 제시한다. 본 논문에서 제안하는 시스템을 이용하여 OCR의 띄어쓰기 오류를 해결할 수 있었다. 향후 띄어쓰기 오류 교정에 필요한 언어 규칙 등을 시스템에 추가한 띄어쓰기 교정시스템을 통하여 OCR의 최종적인 인식률을 향상에 대해 연구할 예정이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.