• Title/Summary/Keyword: 한국시설안전공단

Search Result 144, Processing Time 0.029 seconds

Effect of Phase Change Material on Hydration Heat of Mortar with Fly Ash and Blast Furnace Slag (상전이물질이 플라이애시 및 고로슬래그를 혼입한 모르타르의 수화발열에 미치는 영향)

  • Nam, Yi-Hyun;Jang, Seok-Joon;Kim, Sun-Woong;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Phase change material(PCM) has the capacity to absorb or release energy in heat when the phase changes. This study conducted to investigate the effect of strontium-based PCM on the hydration heat and mechanical properties of mortar with fly ash and blast furnace slag. The amounts of PCM were 1%, 2%, 3%, 4%, and 5% by the cementitious materials weight. The tests about mortar flow, semi-adiabatic temperature rise, compressive and flexural strength tests were carried out for twelve types of mortar mixtures. The test results indicated that the use of PCM was effective to reduce hydration heat and retard hydration of mortar with industrial by-products. In particular, the heat generation rate of mortars with fly ash was lower than that of mortars with blast furnace slag. The compressive strength of mortar with fly ash and blast furnace slag were decreased with increasing PCM ratio.

Analysis of influential factors of cyanobacteria in the mainstream of Nakdong river using random forest (랜덤포레스트를 이용한 낙동강 본류의 남조류 발생 영향인자 분석)

  • Jung, Woo Suk;Kim, Sung Eun;Kim, Young Do
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, the main influencing factors of the occurrence of cyanobacteria at each of the eight Multifunctional weirs were derived using a random forest, and a categorical prediction model based on a Algal bloom warning system was developed. As a result of examining the importance of variables in the random forest, it was found that the upstream points were directly affected by weir operation during the occurrence of cyanobacteria. This means that cyanobacteria can be managed through efficient security management. DO and E.C were indicated as major influencers in midstream. The midstream section is a section where large-scale industrial complexes such as Gumi and Gimcheon are concentrated as well as the emissions of basic environmental facilities have a great influence. During the period of heatwave and drought, E.C increases along with the discharge of environmental facilities discharged from the basin, which promotes the outbreak of cyanobacteria. Those monitoring sites located in the middle and lower streams are areas that are most affected by heat waves and droughts, and therefore require preemptive management in preparation for the outbreak of cyanobacteria caused by drought in summer. Through this study, the characteristics of cyanobacteria at each point were analyzed. It can provide basic data for policy decision-making for customized cyanobacteria management.

Increase of Spillway Discharge by Labyrinth Weir (래버린스위어에 의한 여수로 배제유량 증대)

  • Seo, Il Won;Song, Chang Geun;Park, Se Hoon;Kim, Dong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.11-20
    • /
    • 2008
  • The spillway type of small and midsize dams in Korea is almost overflow weir. To examine flood control capacity of overflow spillway, FLOW-3D was applied to Daesuho dam and analysis was focused on the discharge of dam spillway by changing weir shape. Overflow phases and discharges of linear labyrinth weir and curved labyrinth weir were compared with those of existing linear ogee weir. Hydraulic model experiment was performed to verify numerical result. Verification results showed that overflow behaviors and flow characteristics in the side channel by hydraulic model experiment and numerical simulation are well matched, and water surface elevation at side wall coincides with each other. When the reservoir elevation was increased up to design flood level, in case of the linear ogee weir the flow over the crest ran through smoothly in the side channel, whereas in cases of linear labyrinth weir and curved labyrinth weirs, the flow discharge was increased by 40 cms, and the flow over the weir crest, rotating counter-clockwise, was submerged in the side channel. The results of the water level-discharge curve revealed that labyrinth weir can increase discharge by 71% compared to the discharge of linear ogee weir at low reservoir elevation since it can have longer effective length. But as water surface elevation rises, the slope of water level-discharge curve of labyrinth weir becomes milder by submergence and nappe interference in the side channel.

A Numerical Study on the Effect of Steel Casing on Bearing Capacity of Drilled Shafts for Marine Bridges (수치해석을 이용한 국내 해상교량 현장타설말뚝의 강관지지효과)

  • Lee, Juhyung;Shin, Hyu-Soung;Park, Minkyung;Park, Jae Hyun;Kwak, Kiseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.149-158
    • /
    • 2008
  • This study is concerned with the characteristics of the behavior of drilled shafts with steel casing, a material that is used for large bridge foundations in Korea, and especially for weak submerged ground conditions. The effect of steel casing on bearing capacity of drilled shafts was also verified in this study. Three large drilled shafts with 1.8, 2.4, 3.0m diameter respectively were selected, and 3-D finite element analysis has been undertaken on the following three models: 1) drilled shafts without steel casing, 2) drilled shafts with steel casing, 3) steel-concrete composite drilled shafts. Interface element between concrete core and steel casing was taken into account, and ground conditions and load combinations were applied which had been considered in the fields. Detailed characteristics of the stress and displacement distributions were evaluated to understand the characteristics of the behavior of the drilled shafts. Based on the study performed, the steel casing used as load-carrying materials in the drilled shafts can reduce the horizontal and vertical displacement of drilled shafts by 32~37% and 15~19% respectively compared with drilled shafts without steel casing.

The Site Installation Test of Single-Phase MJ81 Switch Point Machine Localization (단상 MJ81 전기선로전환기 국산품의 현장설치시험)

  • Baek, Jong-Hyen;Kim, Yong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3632-3637
    • /
    • 2009
  • In this paper, we describe the performance results of the field installation test which is required to practicalize the single-phase MJ81 Switch Point Machine. This product has passed the certified test through performance improvement of driving parts in order to use 3 phase MJ81 Switch Point Machine, which is localized by taking over technology from Alstom and Cogifer when constructing Seoul-Busan rapid-transit railway, without change of the electrical equipment at track-side in domestic existing lines which single-phase 220V is used. KRRI and Samsung SDS have localized the single-phase MJ81 Switch Point Machine to improve the speed and safety of the conventional lines through the existing railway technology development project. For practicalization of this, we should, however, verify the performance through not only field installation test in real lines but also interface test with the interlocking. In this paper we verify the practicality of the domestic single-phase MJ81 Switch Point Machine through analysis on the performance result of the field installation test as well as the research contents for this test. Thereby, in Feb 2009 we have received an order from the Korea Rail Network Authority and are currently installing the single-phase MJ81 Switch Point Machine.

A Study of Prestressed Concrete Pile Stiffness for Structural Analysis of Condominium Remodeling with Vertical Story Extension (수직증축형 공동주택 리모델링 구조해석을 위한 PC말뚝 강성에 관한 연구)

  • Choi, Changho;Lee, Hyunjee;Choi, Kisun;You, Youngchan;Kim, Jinyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.81-92
    • /
    • 2017
  • According to the revision of the Housing Act in 2013, it has been possible to carry out an apartment remodeling project involving two to three floor vertical extension. The remodeling project with vertical extension requires foundation reinforcement because structural safety due to additional load and enhanced seismic criteria must be met. In this case, structural analysis is performed to analyze the load distributed to existing PC pile and reinforced additional pile. The vertical stiffness ($K_v$) of the pile is required for structural analysis, but the research on the 20~30 year old PC pile stiffness is very limited. In this paper, the stiffness of the PC pile in accordance with the change of diameter and length was analyzed by examining the results of 38 field pile load tests performed during the construction of the apartments in the 1990's. As a result of the analysis, the pile stiffness decreases with the increase of the length-diameter ratio (L/D). In addition, the results of on-site pile load test are compared with the coefficient 'a' for estimating pile stiffness proposed in Korea Highway Bridge Design Standard (2008) and the Pile Foundation Design Guideline of Korea Railroad Corporation (2012). It shows that 'a' obtained through the estimation of the literature is very similar to the field test results in the range of 10

Reliable Assessment of Rainfall-Induced Slope Instability (강우로 인한 사면의 불안정성에 대한 신뢰성 있는 평가)

  • Kim, Yun-Ki;Choi, Jung-Chan;Lee, Seung-Rae;Seong, Joo-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.53-64
    • /
    • 2009
  • Many slope failures are induced by rainfall infiltration. A lot of recent researches are therefore focused on rainfall-induced slope instability and the rainfall infiltration is recognized as the important triggering factor. The rainfall infiltrates into the soil slope and makes the matric suction lost in the slope and even the positive pore water pressure develops near the surface of the slope. They decrease the resisting shear strength. In Korea, a few public institutions suggested conservative slope design guidelines that assume a fully saturated soil condition. However, this assumption is irrelevant and sometimes soil properties are misused in the slope design method to fulfill the requirement. In this study, a more relevant slope stability evaluation method is suggested to take into account the real rainfall infiltration phenomenon. Unsaturated soil properties such as shear strength, soil-water characteristic curve and permeability for Korean weathered soils were obtained by laboratory tests and also estimated by artificial neural network models. For real-time assessment of slope instability, failure warning criteria of slope based on deterministic and probabilistic analyses were introduced to complement uncertainties of field measurement data. The slope stability evaluation technique can be combined with field measurement data of important factors, such as matric suction and water content, to develop an early warning system for probably unstable slopes due to the rainfall.

A study on hydraulic behaviour and leakage control of segment linings using the numerical method (수치해석을 이용한 세그먼트라이닝의 수리거동과 누수제어 연구)

  • Shin, Jong-Ho;Shin, Yong-Suk;Pam, Dong-In;Chae, Sung-Elm;Choi, Kyu-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.131-140
    • /
    • 2009
  • It has been repeatedly reported that a drainage system of a drained tunnel is deteriorated. And consequently the water pressure on the lining increases with time. However, little research on the watertight tunnel was found in the literatures. According to field measurements, leakage of the undrained tunnel has increased with time, which is completely opposite to the behavior of the drained tunnel. It is evident that the hydraulic deterioration of the tunnel lining changes the water pressure on the lining and the amount of leakage, thus the design coneept in terms of groundwater is not maintained tightly throughout the life time of the tunnel. The Segment lining is generally constructed as watertight. However, it is frequently reported that the leakage in the segment tunnel increases with time. It is also reported that the leakage is generally concentrated at the joints of the segments. In this study structural and hydraulic interaetion of the segment lining due to the hydraulic deterioration of the segments and the joints is investigated using the numerical modeling method. An electric utility tunnel below groundwater table is considered for the analyses. The effects of hydraulic deterioration of the segment lining are identified in terms of ground loading, water pressure and lining behavior. A remedial grouting measure for leakage is also numerically simulated, and its appropriateness is evaluated.

Seismic Performance Evaluation of the Underground Utility Tunnel by Response Displacement Method and Response History Analysis (응답변위법과 응답이력해석법을 이용한 지중 공동구의 내진성능 평가)

  • Kwon, Ki-Yong;Lee, Jin-Sun;Kim, Yong-Kyu;Youn, Jun-Ung;Jeong, Soon-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.119-133
    • /
    • 2020
  • Underground utility tunnel, the most representative cut and cover structure, is subjected to seismic force by displacement of the surrounding soil. In 2020, Korea Infrastructure Safety Corporation has published "Seismic Performance Evaluation Guideline for Existing Utility Tunnel." This paper introduces two seismic evaluation methods, RDM (Response Displacement Method) and RHA (Response History Analysis) adopted in the guide and compares the methods for an example of an existing utility tunnel. The test tunnel had been constructed in 1988 and seismic design was not considered. RDM is performed by single and double cosine methods based on the velocity response spectrum at the base rock. RHA is performed by finite difference analysis that is able to consider nonlinear behavior of soil and structure together in two-dimensional plane strain condition. The utility tunnel shows elastic behavior for RDM, but shows plastic hinge for RHA under the collapse prevention level earthquake.

Seismic Performance Preliminary Evaluation Method of Reinforced Concrete Apartments with Bearing Wall system (기존 철근콘크리트 벽식 공동주택의 내진 성능 예비 평가법에 관한 연구)

  • Chung, Lan;Woo, Sung-Sik;Choi, Ki-Young;Park, Tae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.293-300
    • /
    • 2007
  • In Korea, the seismic design regulations was established since 1988 about regularity scale of structures. However, It was not established about seismic performance and evaluation method as the most existing buildings was constructed before Earthquake-Resistant Design(1988). In this study, for model structures which are 4 units of non-seismic designed apartment and 3 units of seismic designed in Korea performed seismic performance evaluation by suggested KISTC (2004). And the result compare to evaluate Capacity Spectrum Method by using MIDAS Gen and SDS. As a result, we observed that suggested KISTC's method have overestimated for shear stress and drift index. The purpose of this study provides most conformity seismic performance evaluation process and the appropriate method of calculating the seismic performance index in Korea.