• Title/Summary/Keyword: 한국수화

Search Result 2,093, Processing Time 0.029 seconds

Production of Foamed Glass by Using Hydrolysis of Waste Glass (II) - Foaming Process of Hydrated Glass - (폐유리의 가수분해 반응에 의한 발포유리의 제조(II) - 가수분해된 유리의 발포 -)

  • Lee, Chul-Tae;Lee, Hong Gil;Um, Eui-Heum
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.760-767
    • /
    • 2005
  • The goal of this study was to find an application method of the waste soda-lime glass as the feed material for foamed glass by foaming of hydrated waste glass. The proper conditions for the foaming of hydrated waste glass were found to be: temperature of $92.5^{\circ}C$; reaction time of 10~20 min; particle size of -325 mesh as the unhydrated glass starting materials; and graphite weight to the hydrated glass ratio of 0.003 as the foaming agent. The resulting formed glass made from hydrated mixed waste glass under above mentioned conditions had the characteristics of density less than $0.2g/cm^3$ and thermal conductivity of $0.05kcal/mh^{\circ}C$.

Loading Behavior of pH-Responsive P(MAA-co-EGMA) Hydrogel Microparticles for Intelligent Drug Delivery Applications (지능형 약물전달시스템을 위한 pH 감응형 P(MAA-co-EGMA) 수화젤 미세입자의 탑재거동)

  • Shin, Young-Chan;Kim, Kyu-Sik;Kim, Bum-Sang
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.421-426
    • /
    • 2008
  • pH-responsive P(MAA-co-EGMA) hydrogel microparticles were synthesized via dispersion photo polymerization and the feasibility of the particles as the cosmetic formulation was investigated. Rh-B and the functional materials for the cosmetic application such as ascorbic acid, adenosine, EGCG, and arbutin were loaded in the P (MAA-co-EGMA) hydrogel microparticles in order to examine the interaction between the hydrogel and the loaded materials. In the loading experiments, Rh-B showed the highest loading efficiency to the P(MAA-co-EGMA) hydrogels due to the electrostatic attraction between the negative charge of the hydrogels and the positive charge of Rh-B at the ionized states. However, the functional materials showed relatively low loading efficiencies because of the electrostatic repulsions between the negative charges of both the hydrogels and the materials at the ionized states. In addition, P(MAA-co-EGMA) hydrogel microparticles showed pH-responsive release behavior of Rh-B according to the external pH changes.