• Title/Summary/Keyword: 한국수화

Search Result 2,092, Processing Time 0.029 seconds

Strength Estimation Model of Early-Age Concrete Considering Degree of Hydration and Porosity (수화도와 공극률을 고려한 초기재령 콘크리트의 강도 예측 모델)

  • 황수덕;이광명;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.137-147
    • /
    • 2002
  • Maturity models involving curing temperature and curing ages have been widely used to predict concrete strength, which can accurately estimate concrete strength. However, they may not consider physical quantities such as the characteristics of hydrates and the capillary porosity of microstructures associated with strength development. In order to find out the effects of both factors on a strength increment, the hydration model and the estimation method of the amount of capillary porosity were established, and the compressive strength test of concrete nth various water/cement ratios was carried out considering two test parameters, curing temperature and curing age. In this study, by analyzing the experimental results, a strength estimation model for early-age concrete that can consider the microstructural characteristics such as hydrates and capillary porosity was proposed. Measured compressive strengths were compared with estimated strengths and good agreements were obtained. Consequently, the proposed strength model can estimate compressive strength of concrete with curing age and curing temperature within an acceptable error.

Control of Bacterial Wilt of Tomato using Copper Hydroxide (코퍼 하이드록사이드를 이용한 토마토 풋마름병 방제)

  • Han, You-Kyoung;Han, Kyung-Sook;Lee, Seong-Chan;Kim, Su
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.3
    • /
    • pp.298-302
    • /
    • 2011
  • Bacterial wilt, caused by Ralstonia, solanacearum, is a very destructive disease to tomato plants (Solanum lycopersicum) in Korea. This study was undertaken to find out the growth inhibitory effect bactericides on bacterial wilt pathogen of streptomycin, oxytetracyclin streptomycin sulfate WP and significantly suppressed the growth of bacterial wilt pathogen. Copper hydroxide WP showed control value of 62.5%. Therefore, it is concluded that the bactericide used in this study showed strong inhibitory effect to tomato bacterial wilt and they can be recommend to control the disease. And also, Copper hydroxide WP may be effective for control of bacterial wilt of tomato in conventional culture, farming without agricultural and organic farming.

A study on dehydration of rare earth chloride hydrate (염화 희토류 수화물의 탈수화에 관한 연구)

  • Lee, Tae-Kyo;Cho, Yong-Zun;Eun, Hee-Chul;Son, Sung-Mo;Kim, In-Tae;Hwang, Taek-Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.2
    • /
    • pp.125-132
    • /
    • 2012
  • The dehydration schemes of rare earth (La, Ce, Nd, Pr, Sm. Eu, Gd, Y) chloride hydrates was investigated by using a dehydration apparatus. To prevent the formation of the rare earth oxychlorides, the operation temperature was changed step by step ($80{\rightarrow}150{\rightarrow}230^{\circ}C$) based on the TGA (thermo-gravimetric analysis) results of the rare earth chloride hydrates. A vacuum pump and preheated Ar gas were used to effectively remove the evaporated moisture and maintain an inert condition in the dehydration apparatus. The dehydration temperature of the rare earth chloride hydrate was increased when the atomic number of the rare earth nuclide was increased. The content of the moisture in the rare earth chloride hydrate was decreased below 10% in the dehydration apparatus.

Effect of Different Formulations on the Biological Activity of Herbicide Cyhalofop-Butyl (제형의 차이가 제초제 Cyhalofop-butyl의 생물활성에 미치는 영향)

  • Han, Kang-Wan;Cho, Jae-Young;Ro, Ann-Sung
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.440-446
    • /
    • 1995
  • In order to select the proper formulation of newly developed herbicide Cyhalofop-butyl{n-butyl-(R)-2-[4-(2-fluro-4-cyanophenoxy)phenoxy]propionte} to Echino-chloacrus-galli(L)P. Beaw. several formulations were made and tested by biological assay. Weed control of wettable powder formulated with two adjuvants on E. crus-galli showed higher effect as compared with the formulation made without adjuvants. Higher concentration of adjuvants resulted in higher absorption and higher weed control on E. crus-galli. However, adhesional force of wettable powder applied to leaf surface was not positively correlated to the amount of herbicide absorption. The weeding effect and amount of herbicide absorbed on E. crus-galli were higher by emulsifiable concentrateformulations with different HLB and non ionic surfactants as compared with wettable powder formulations. The higher adhesional force and higher absorption of herbicide on E. crus-galli were obtained from microemulsion than the others. Granulization of the herbicide with appropriate adjuvants in a form of resurfacing on the submerged water gave rise to a good weeding effect and believed to be a possible promising formulation.

  • PDF

The Changes of Physical Properties of Barley Grain at Various Polishing Yields during Hydration Process (도정수율별(搗精收率別) 보리의 수화공정중(水和工程中) 물성변화(物性變和)에 관(關)한 연구(硏究))

  • Mok, Chul-Kyoon;Nam, Young-Joong
    • Applied Biological Chemistry
    • /
    • v.26 no.1
    • /
    • pp.47-52
    • /
    • 1983
  • The size distribution and changes of volume and grain hardness of ‘Sedohadaka', waked barley of various polishing yields during hydration process at various temperatures were investigated, and were analyzed kinetically, Both major and minor diameter of barley grain decreased linearly during polishing, and the decreasing rate of major diameter was greater than that of minor diameter. The volume change of barley grain could be expressed as a power of hydration time, and a break point was found in case of non-polished barley. The changing rate of grain hardness followed the equation of a first-order reaction, and the reaction rate constant increased with decreasing polishing yields and at higher temperature in the range of $20{\sim}60^{\circ}C$. The activation energy of hardness change reaction of polished barley during hydration were ranged $5.1{\sim}7.8Kcal/mole$, and 13.3Kcal/mole of non-polished barley.

  • PDF

Characterization of Thermal Properties of Concrte and Temperature Prediction Model (콘크리트재료의 열특성 및 수화열 해석)

  • 양성철
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.121-132
    • /
    • 1997
  • The thermal behavior of' concrete can be ch;lracterized from a knowledge of concrete ternperatu1.e at early ages, environmental conditions, and cement hydration in the mixture. 'l'o account for thost. interactions, a computer model was developed for prwlicting the temperature pr.ol'ile in hnrdcning c o n c r c t ~ st.r~icture in terms of material and tmvironmcntal factors. The cerncnt hydration cha~.acteristics such as the activating energy, total heat 1ihei.atr.d. anti th\ulcorner degree of' hydration. can represent the internal heat gc,neration. In this study. th(> activating c1ncrgy and the tlcgree of' hydration curve were determined well fmm the rnortn~. compressive strength tests while total amount of heat liberated was determined by tht> isothermal calorimctcr method. The main purpose of' this study is to correlate measured tt>mperaturr distributions in a concrete st1,ucture during thc hardening process with the ~ c s u l t s computed f'ro~n theoretical considrl.ations. Using twodimensional heat transfer model, first. the importance of several parameters will be identified by a parametric analysis. Then, the tcmpcmture distribution of thc cylindrical concrete specimen in the laboratory was mensuwti and compared with that yielded by thc theoretical considel.ations.

Hydration of High-volume GGBFS Cement with Anhydrite and Sodium Sulfate (경석고 및 황산나트륨을 함유한 하이볼륨 고로슬래그 시멘트의 수화특성)

  • Moon, Gyu-Don;Choi, Young-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2015
  • In order to use the high-volume slag cement as a construction materials, a proper activator which can improve the latent hydraulic reactivity is required. The dissolved aluminum silicon ions from ground granulated blast furnace slag (GGBFS) react with sulfate ions to form ettringite. The proper formation of ettringite can increase the early-age strength of high-volume GGBFS (80%) cement. The aim of this study is to investigate the hydration properties with sulfate activators (sodium sulfate, anhydrite). In this paper, the effects of $Na_2SO_4$ and $CaSO_4$ on setting, compressive strength, hydration, micro-structure were investigated in high-volume GGBFS cement and compared with those of without activator. Test results indicate that equivalent $SO_3$ content of 3~5% improve the early-age hydration properties such as compressive strength, heat evolution rate, micro-pore structure in high-volume GGBFS cement.

Properties of Reaction Rim on Blast Furnace Slag Grain with Alkali Activator according to Hydration Reaction (알칼리 자극제(刺戟劑)에 의해 고로(讀爐) 수쇄(水碎) 슬래그의 주위(周圍)에 형성(形成)된 Reaction Rim의 특성(特性))

  • Lee, Seung-Heun;Mun, Young-Bum
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.42-48
    • /
    • 2009
  • Since there are $OH^-,\;[SiO_4]^{4-}$ ion of high concentration at early hydration in the system added with activator (NaOH+$Na_2OSiO_2$) in the blast furnace slag, different from cement hydration, hydration progresses fast without induction period and forms reaction rim around the blast furnace slag grain. $0.6{\mu}m$ reaction rim was formed around the blast furnace slag grain from the 1 day of reaction period, and the thickness of reaction rim increases over the reaction time, growing to $1{\mu}m$ on the 28 days. Unreacted blast furnace slag grain deformed from angular shape to the spherical shape. Mole ratio of Ca/Si tends to decrease from inside of blast furnace slag grain to reaction rim. Difference of Ca/Si mole ratio between reaction rim and inside the blast furnace slag grain decreased and generated hydrate was a poor crystalline CSH(I) with Ca/Si mole ratio less than 1.5.

Evaluation on the Properties of Ternary blended Cement Concrete using Industrial Byproducts (산업부산물을 혼합하여 제작한 3성분계 시멘트 콘크리트의 성능 평가)

  • Kim, Chun Ho;Kim, Nam Wook
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.13-20
    • /
    • 2014
  • Nowadays, due to the development of industrial and civil engineering technology, enlargement and diversification of concrete structures are being tried. At the same time, the hydration heat generated during the construction of large structures lead to thermal crack, which is occurs causing a problem that durability degradation. In this paper, in order to study the durability and reducing hydration heat of concrete according to the types of cement, that is ordinary portland cement, fly ash cement mixed with a two-component, ternary blend cement mixed with fly ash and blast furnace slag and low heat cement concrete are produced, and compare and analyze the results using property, durability and hydration characteristics, ternary blend cement is appeared to be the most excellent in durability and reduction of hydration heat, and it was determined suitable for construction of mass concrete and requiring durability.

Preparation and Properties of Biodegradable Hydrogels from Poly(2-hydroxyethyl aspartamide) and HMDI (HMDI 가교 폴리아스팔트아미드 수화젤의 제조 및 특성)

  • Kim Jeong Hoon;Sim Sang Jun;Lee Dong Hyun;Kim Dukjoon;Lee Youngkwan;Kim Ji-Heung
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.518-521
    • /
    • 2005
  • Biodegradable polymers and hydrogels have been increasingly applied in a variety of biomedical applications including current drug delivery system and tissue engineering field. ${\alpha},\;{\beta}-Poly$(N-2-hydroxyethyl-DL-aspart-amide), PHEA. is one of poly(amino acids) with hydroxyethyl pendants, which is hewn to be biodegradable and potentially biocompatible. So that, the utilization and various chemical modifications of PHEA have been attempted for useful biomedical applications. In this wort chemical gels based on PHEA were prepared by crosslinking with diisocyanate compound in DMF in the presence of catalyst. Here, the PHEA was prepared from polysuccinimde, the thermal polycondensation product of aspartic acid, via ring-opening reaction with ethanolamine. The preparation of gels and their swelling behavior, depending on the different medium and pH, were investigated. Also the morphology by SEM and simple hydrolytic degradation were observed.