• Title/Summary/Keyword: 한국건설

Search Result 22,307, Processing Time 0.046 seconds

An Experimental Study on the Influence of the Qualities of Ordinary Portland Cement on the Flowability of High Flow Concrete (보통 포틀랜드 시멘트 품질이 고유동 콘크리트의 유동 특성에 미치는 영향에 관한 연구)

  • Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deug-Hyun;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • Recently, due to developments in construction technology, the use of high-performance concrete became popular. High-performance concrete when compared to the ordinary concrete can better satisfy required performances by using mineral admixture and superplasticizer. Various studies on the effect of admixture materials on the quality of high-performance concrete have been reported. But there exist limited number of reported results on the effect of cement qualities, which is the most important constituent material in concrete. Therefore, in this study, the relationship between the quality of cement and the flowability of high flowing concrete is investigated. Qualities of domestically produced cement were identified, and then the influence of the qualities of cement on the flowability of high flowing concrete is evaluated. The result showed that the dosage of required superplasticizer was dependent on cement fineness, to brain, free-CaO, and interstitial phase, which all trigger initial hydration process of cement. Particularly, the results showed that fineness of cement has a high impact on the dosage of the superplasticizer. For strength property of concrete, the dosage of superplasticizer had a significant effect on the early age strength, but had negligible effect in the long term strength.

Development of Green Cement Type Grouting Materials with High Toughness and Non-Shrinkage Including Powder of Waste Tire and Resin (분말 폐타이어와 분말 수지를 함유한 환경친화적 고인성 시멘트계 무수축 그라우트재의 개발)

  • Park, Seok-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.623-630
    • /
    • 2007
  • Grouting materials are used for the unification of superstructural and substructural body like bridge seat (shoe) or machinery pedestal and e.t.c by filling their intercalary voids. Accordingly, grouting materials have been developed and used mainly with products of high strength because those materials are constructed specially in a part receiving large or impact load. In this situation, the structural body constructed by grouting materials with high stiffness-centered (caused by high strength) products is apt to cause brittle failure when receiving over a limit stress and to cause cracks according to cumulative fatigue by continuous and cyclic load. In addition, grouting materials are apt to cause cracks by using too much rapid hardening agents that give rise to high heat of hydration to maintain high strength at early age. In this study, to overcome these problems, cement type grouting materials including powder of waste tire and resin as elastic materials which aim to be more stable construction and to be improvement of mother-body's unification are developed and endowed with properties of high toughness and high durability add to existing properties of high flowability, non-shrinkage and high strength. Besides, this study contribute to of for green construction materials for being possible recycling industrial waste like waste tire and flyash. On the whole, seven type mixing conditions are tested and investigated to choose the best mixing condition.

An Experimental Study on Properties of Concrete Using Latent Heat Binder (잠열성 결합재를 활용한 콘크리트의 특성에 관한 실험적 연구)

  • Kim, Yong-Ro;Kim, Do-Su;Khil, Bae-Su;Kim, Ook-Jong;Lee, Do-Bum
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.661-668
    • /
    • 2008
  • It is necessary to develop a new technology for effectively reducing hydration heat and controlling thermal cracking caused increasing construction of large size massive concrete structures such as mat foundation of high-rise building, grandiose bridge, and LNG tank. Therefor, to develop a new technology for reducing hydration heat of large size massive concrete in this study, after developing the latent heat binder for controling hydration heat of concrete by application of latent heat material, it was investigated basic properties and durability such as slump, air content and compressive strength, shrinkage properties, permeability, freezing and thawing resistance, corrosion, and hydration heat generation properties of concrete using latent heat binder. As a test result, it was confirmed that latent heat binder was not affected adversely the basic property and durability of concrete, and was advanced on the reduction of hydration heat and control of thermal crack. It is expected to be applied as the excellent technology on the management of hydration heat and thermal crack in large size mass concrete structures.

Tensile Properties and Adhesion of Hybrid-Type Anti-Corrosion Polymer Cement Slurry (하이브리드형 방식 폴리머 시멘트 슬러리의 인장특성 및 접착성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.635-642
    • /
    • 2008
  • In recent years, epoxy-coated reinforcing bars have been widely used in order to prevent the corrosion of ordinary reinforcing bar. However, they have a bad balance between performance and cost. Especially, they have a brittleness properties, low bond strength to cement concrete and no good bend-ability in the field. The purpose of this study is to evaluate the tensile properties and adhesion of hybrid-type anti-corrosion polymer cement slurry (PCS). PCSs are prepared with four types polymer dispersions using fly ash and silica fume, and tested for proper coating thickness, tensile properties, adhesion to steel plate and bend-ability. From the test results, the viscosity of PCS is effected by polymer dispersion types, and is a little decreased by using fly ash. The coating thickness of PCS has a proper thickness at polymer-binder ratio of 100%. It is apparent that the coating thickness has various values according to viscosity of PCS, water-binder ratio and polymer-binder rato. PCS has a good various anticorrosion properties and physical properties such as tensile strength, adhesion and bend-ability. It is also recommended that proper coating thickness to reinforcing bar is in the ranges of 150 to $250{\mu}m$ for bond strength, adhesion and bend-ability. It is also expected that the coated reinforcing bar using PCS is widely used instead of epoxy coated reinforcing bar in the industrial field.

Ion Effects of HVDC ±500 kV Double Bipole Overhead Transmission Line with Metallic Return Conductor Using Full-scale Test Line (실증시험선로를 이용한 도체귀로형 HVDC ±500 kV Double Bipole 가공송전선로의 이온류 특성 평가)

  • Shin, Kooyong;Kwon, Gumin;Ju, Munno;Woo, Jeong Min
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.249-256
    • /
    • 2019
  • A full-scale test line was established to verify the electrical environmental interferences caused by the HVDC ±500 kV Double Bipole overhead transmission line with metallic return conductor, which is scheduled for construction in Korea and the fullscale test was conducted for one year. And through the human perception test of the DC electric-field under the HVDC Double Bipole line, the threshold value at which the human detects DC electric field was investigated to verify the validity of the design guide for the HVDC ±500 kV Double Bipole overhead transmission line. The polarity configuration of the HVDC ±500 kV Double Bipole test line was arranged diagonally with the same polarity in terms of the electrical environment disturbance and operation. The test line utilized the 6-bundle arrangement to prevent the corona discharge taking into account the domestic social acceptability. The test results show that the HVDC ±500 kV Double Bipole transmission line generated very little corona discharge from the conductors. Therefore, both DC electric field and ion current density met the domestic design guide for DC overhead transmission lines. Also, the human perception test of DC electric fields under the test line showed that 70% of participants did not recognize the DC electric field even when exposed to 23 kV/m.

Compression Strength Behavior of Mixed Soil Recycling Bottom Ash for Surface Layer Hardening (매립석탄회를 재활용한 표층연약지반 개량용 혼합토의 압축강도 특성 연구)

  • Oh, Gi-dae;Kim, Kyoung Yul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.287-293
    • /
    • 2019
  • Domestic thermal power plant fly ash is at a situation which emissions are increasing every year. Comparing to Fly Ash, Bottom Ash is only 15 %, but it's recycling rate is low, so most of them is being buried in the ground. However, landfill site of every power plant is full, and the construction of a new landfill is difficult. To solve this problem, the best solution is to use Bottom Ash as a landfill of large-scale civil engineering projects. The purpose of this study was to investigate the compression strength behavior characteristics of weak clay and uniaxial compression test to examine the applicability of surface soil solidification method of mixed soils mixed with industrial waste coal ash and weak clay which is buried in bulk. As a result of the test, the fluidity of the Mixed soil with clay + bottom ash + cement was improved to 200 mm at the water content of 91-92 %. The uniaxial compressive strength was also good for the mixed soils (clay + bottom ash + cement) meeting the required strength of 159 kN/㎡ at 28 days. However, the other samples did not meet the required strength. In this study, the prediction equations for the compression strength behavior by cement and curing period were presented.

A study on simulation modeling of the underground space environment-focused on storage space for radioactive wastes (지하공간 환경예측 시뮬레이션 개발 연구-핵 폐기물 저장공간 중심으로)

  • 이창우
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.306-314
    • /
    • 1999
  • In underground spaces including nuclear waste repository, prediction of air quantity, temperature/humidity and pollutant concentration is utmost important for space construction and management during the normal state as well as for determining the measures in emergency cases such as underground fires. This study aims at developing a model for underground space environment which has capabilities to take into account the effects of autocompression for the natural ventilation head calculation, to find the optimal location and size of fans and regulators, to predict the temperature and humidity by calculating the convective heat transfer coefficient and the sensible and latent heat transfer rates, and to estimate the pollutant levels throughout the network. The temperature/humidity prediction model was applied to a military storage underground space and the relative differences of dry and wet temperatures were 1.5 ~ 2.9% and 0.6 ~ 6.1%, respectively. The convection-based pollutant transport model was applied to two different vehicle tunnels. Coefficients of turbulent diffusion due to the atmospheric turbulence were found to be 9.78 and 17.35$m^2$/s, but measurements of smoke and CO concentrations in a tunnel with high traffic density and under operation of ventilation equipment showed relative differences of 5.88 and 6.62% compared with estimates from the convection-based model. These findings indicate convection is the governing mechanism for pollutant diffusion in most of the tunnel-type spaces.

  • PDF

Evaluation of Greenhouse Gas Emission for Wooden House Using Simplified Life Cycle Assessment Tool (목조주택 온실가스 배출량 평가를 위한 간이 전과정평가 툴 개발)

  • Chang, Yoon-Seong;Kim, Sejong;Son, Whi-Lim;Jung, Soon-Chul;Shin, Hyun-Kyeong;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.650-660
    • /
    • 2017
  • In this study, simplified LCA (life cycle assessment) tool was developed to increase accessibility and availability on LCA timber construction. The result of simplified LCA was compared with commercial program on LCA (Simapro.7) to verify its availability. As a result of evaluating environmental impacts with the Life Cycle Inventory of all processes, gap between LCA and simplified LCA tools of timber construction was about 1%. Therefore, the simplified LCA tool could analyse greenhouse gas emissions of timber construction and to expand number of data set through improved conveniency of users for developing database of timber construction in Korea. The reduction effects of greenhouse gas emissions of timber construction was about 53% of total emission offset up to construction phase. The results of this study would support decision making process to expand to timber construction policy to showcase environmental friendliness of timber construction. It was expected to contribute to response to the New climate regime in forestry.

Christian Peace Education to strengthen Peace Capabilities (평화역량을 강화하는 기독교 평화교육)

  • Cho, Miyoung
    • Journal of Christian Education in Korea
    • /
    • v.63
    • /
    • pp.377-406
    • /
    • 2020
  • The purpose of this study is to present a model for Christian peace education requested in the era of globalization. Globalization increases interdependence and unifies the global economy due to the development of innovative communication and transportation systems. The world is currently experiencing a period of unlimited competition without borders. Globalization has promoted growth and development, but has also caused problems. In the face of this absence of peace, this study was conducted to determine whether a Christian understanding of peace and peace education can serve as a way to overcome the challenges facing modern society and to meet people's desire for peace. It examines the concept of globalization and the situation of the absence of peace due to problems in the era of globalization, and examines the concept of peace and peace education from a Christian perspective. After that, the concept of Christian peace required in the era of globalization and the peace capability to be strengthened in peace education will be presented, and how to proceed. The christian peace education model strengthens students' peace capabilities which can be used to build a peaceful future world. The purpose of christian peace education in the face of globalization is to develop a peaceful relationship with oneself, others, the world, and the environment. The goal of christian peace education is to cultivate peaceful human beings by strengthening their peace capabilities, namely peace sensitivity, nonviolent communication, and peace imagination. This study's significance is that it presented an christian peace christian education model that strengthens learners' peace capabilities through a biblical and theological approach in the face of non-peaceful situations arising as a result of globalization.

Analysis on the International Trends in Safe Management of Very Low Level Waste Based upon Graded Approach and Their Implications (차등접근법에 근거한 극저준위폐기물의 안전관리 국제동향 및 시사점에 대한 고찰)

  • Cheong, Jae-Hak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.49-62
    • /
    • 2011
  • Recently, International Atomic Energy Agency and major leading countries in radioactive waste management tend to subdivide the categories of radioactive waste based upon risk-graded approach. In this context, the category of very low level waste has been newly introduced, or optimized management options for this kind of waste have been pursued in many countries. The application of engineered surface landfill type facilities dedicated to dispose of very low level waste has been gradually expanded, and it was analyzed that their design concept of isolation has been much advanced than those of the old fashioned surface trench-type disposal facilities for low and intermediate level waste, which were usually constructed in 1960's. In addition, the management options for very low level waste in major leading countries are varied depending upon and interfaced with the affecting factors such as: national framework for clearance, legal and practical availability of low and intermediate level waste repository and/or non-nuclear waste landfill, public acceptance toward alternative waste management options, and so forth. In this regard, it was concluded that optimized long-term management options for very low level waste in Korea should be also established in a timely manner through comprehensive review and discussions, in preparation of decommissioning of large nuclear facilities in the future, and be implemented in a systematic manner under the framework of national policy and management plan for radioactive waste management.