1T-1C로 구성되는 기존의 dynamic random access memory (DRAM)는 데이터를 저장하기 위해 적절한 커패시턴스를 확보해야 한다. 따라서 커패시터 면적으로 인한 집적도의 한계에 직면해있으며, 이를 대체하기 위한 새로운 DRAM인 1T- DRAM이 연구되고 있다. 기존의 DRAM과 달리 silicon-on-insulator (SOI) 기술을 이용한 1T-DRAM은 데이터 저장을 위한 커패시터가 요구되지 않는다. 정공을 채널의 중성영역에 축적함으로서 발생하는 포텐셜 변화를 이용하며, 이때 발생하는 드레인 전류차를 이용하여 '0'과 '1'을 구분한다. 기존의 완전공핍형 평면구조의 1T-DRAM은 소스 및 드레인 접합부분에서 발생하는 누설전류로 인해 '0' 상태의 메모리 유지특성이 열화되는 단점을 가지고 있다. 따라서 메모리의 보존특성을 향상시키기 위해 소스/드레인 접합영역을 줄여 누설전류를 감소시키는 구조를 갖는 1T-DRAM의 연구가 필요하다. 또한 고유전율을 가지는 Si3N4를 이용한 oxide-nitride-oxide (ONO)구조의 게이트 절연막을 이용하면 동일한 두께에서 더 낮은 equivalent oxide thickness (EOT)를 얻을 수 있기 때문에 보다 저 전압에서 1T-DRAM 동작이 가능하여 기존의 SiO2 단일층을 이용한 1T-DRAM보다 동일 전압에서 더 큰 sensing margin을 확보할 수 있다. 본 연구에서는 누설전류를 감소시키기 위하여 소스 및 드레인이 채널위로 올려진 recessed channel 구조에 ONO 게이트 절연막을 적용한 1T-DRAM을 제작 및 평가하고, 본 구조의 1T-DRAM적용 가능성 및 ONO구조의 게이트 절연막을 이용한 sensing margin 개선을 확인하였다.
DC-DC콘버어터의 한가지 회로방식으로서 검토되고 있는 전류형 DC-DC콘버어터는 지금까지의 연구에 의하여 종래의 회로방식에 비하여 안정성이 가장 우수한 회로방식이란 점이 명백해졌다. 본 색에서는 스위칭 주파수의 고주파화에 의해 평활콘덴서의 용량을 축소시킬 수 있다는 점을 전제로하여, 부환회로에 위상지연 요소가 존재하고 평골콘덴서의 등가직렬저항을 고려한 경우, 안정성과 평활콘덴서의 용량과의 관계를 해석에 의해 명백히 하였다. 그 결과 전류형 DC-DC콘버어터는 평활콘덴서의 용량을 축소한 경우에도 통상의 강압형콘버터에 비하여 높은 안정성을 갖는 반면, 출력전압의 리풀이 출력전류의 증가에 따라서 증가하여 이것에 의하여 실용상의 한계가 존재한다는 점이 명백해졌다.
Sn(II)-cupferron 착물에 대한 펄스차이 음극벗김 전압전류법적 연구를 pH 4.20의 0.1 M 아세트산 완충용액에서 수행하였다. 수은전극 표면에 흡착된 Sn(II)-cupferron 착물의 환원피크전류 크기에 미치는 용액의 pH, 착화제의 농도, 축적전위 및 축적시간의 영향을 검토하였다. 또한 Sn(II)-cupferron 착물의 환원피크전류에 영향을 주는 다른 금속 양이온들의 방해효과도 검토하였다. 이 방법에 의한 Sn(II)의 검출한계는 축적시간을 60 sec로 하였을 때 $3.1{\times}10^{-9}$ M(0.37 ppb)이었으며, $5{\times}10^{-8}$ M의 Sn(II) 분석에 대한 상대표준편차(n=8)는 3.0%이었다.
음극의 크기에 따라 발생된 전자빔 전류가 도파관 영역에서 공간 전하 한계 전류를 초과할 경우 형성되는 가상 음극 (Virtual Cathode)을 이용한 축 방향으로의 고출력 마이크로파 발생 및 진단에 관한 연구를 수행하였다. 먼저 실험에 앞서 전산모사를 통해 결과를 예측하고 실험을 통해 확인하는 순으로 하였다. 전산 모사는 2-1/2차원 Partical-In-Cell(PIC) 코드인 "MAGIC"을 사용하여 축 방향으로 진행하는 새로운 개념의 가상 음극발진기를 모사하고, 정확한 경과를 얻기 위해 강렬한 상대론적 전자빔 발생 장치인 "천둥"( 최대 전압 600kV, 최대 전류 70KA, 60ns)을 사용하여 전산 모사에 넣어줄 전류값을 얻었다. 음극의 반지름이 2.5cm 일 때 전파되는 최대 출력이 약 800MW인 마이크로파가 발생되었고, 이때 출력변환 효율이 약 30%임을 전산모사를 통하여 알 수 있었다. 또한 전파하는 전기장의 축방향 성분(Ez)의 반지름 방향에 대한 분포 특성을 통하여 주된 전파 모드가 TM01와 그 상위모드의 조합으로 이루어졌음을 알았고 이때 기대되는 동작 진동수는 5~7 GHz임을 전산 모사 결과로부터 알 수 있었다. 실험을 통해서도 음극의 크기가 2.5cm 때, 최대 출력이 약 520MW인 마이크로파를 발생하였고, 이 때 출력 변환 효율은 약 8%이고, 방전 사진을 통해서 주된 동작 모드가 TM01와 그 상위모드의 조합으로 이루어졌음을 알았고, 이때 주된 출력 진동수는 5~6 GHz임을 알 수 있었다.는 5~6 GHz임을 알 수 있었다.
현재 배뇨 장애를 진단할 수 있는 대표적인 임상 방법들은 침습적이고 고가이며, 장시간 연속적인 모니터링을 수행하기에는 한계가 있다. EIT는 비침습적 방법으로 외부 전극을 통하여 전류를 주입하고 유기된 전압을 측정하여 내부 전기적(임피던스) 특성을 영상화 하는 기술로써, 저렴한 비용으로 방광의 상태를 모니터링 할 수 있는 유용한 기법이 될 수 있다. 전극을 통하여 주입된 전류 패턴에 따라 측정전압 데이터의 신호특성이 달라지고 영상 복원 성능에 영향을 미친다. 본 논문에서는 인체 하복부 부근에 위치한 방광의 크기 변화에 대한 민감도가 극대화될 수 있는 모델링을 위해 입력전류 패턴에 따른 영상 복원 성능을 분석하였다.
유해성 유기물을 효과적으로 분해시키는데 이용되는 Ag(II)이온에 의한 전기화학적 매개산화 공정의 한계전류밀도를 예측하기 위하여 질산전해질의 농도, Ag(I) 이온의 농도 및 온도변화에 따른 Ag(I)/Ag(II) 이온쌍의 cyclic voltammogram을 백금전극에서 얻었으며, 피크전류로부터 Ag(I) 이온의 확산계수를 구하였다. Ag(I)/Ag(II) 이온쌍의 산화환원 반응은 물 분해 반응에 의해 크게 영향을 받았으며 백그라운드 보정을 통하여 정확한 피크전류를 측정할 수 있었다. Ag(I) 이온의 확산계수를 질산용액의 점도 및 온도의 함수로 나타냄으로써 전기화학적 매개산화공정의 한계전류밀도를 용이하게 예측할 수 있는 실험식을 제시하였다.
본 논문에서는 복소 벡터 동기 좌표계 비례 적분(PI) 전류 제어기의 안티 와인드업(anti-windup)이득 설정에 대해 논의한다. 복소 벡터 동기 좌표계 비례 적분 전류 제어기는 시스템 제정수 변동에 기존의 비례 적분 전류 제어기 보다 더 강인한 특성을 보인다. 복소 벡터 전류 제어기 역시 적분기를 포함하고 있으며, 엑츄에이터(actuator)의 물리적인 한계로 전압이 포화되는 경우에는 안티 와인드업이 필요하게 되고, 적절치 못한 안티 와인드업 이득 설정은 제어 시스템의 동특성을 저하시킬 수 있다. 따라서 복소 벡터 동기 좌표계 비례 적분 전류 제어기에 적합한 안티 와인드업 이득을 제안하였고, 제안된 알고리즘의 유효성은 실험을 통하여 검증하였다.
(Ba, Sr)TiO3 (BST)[1-3] 박막은 유전상수가 크고 고주파에서도 유전특성 저하가 적기 때문에 ULSI DRAM(Dynamic Random Access Memory)에 응용 가능한 물질로 최근 각광을 받고 있다. 하지만, 아직 BST 박막을 DRSM에 바로 적용하기 위해선 몇 가지 문제점이 있다. 그 중 누설전류 문제는 디바이스 응용시 매우 중요한 요소이다. 특히, DRAM에서 refresh time와 직접적인 관련이 있어 디바이스 내의 신뢰도 및 전력소모를 결정하는 주된 인자가 된다. 지금까지, BST 박막의 인가전업, 온도, 그리고 전극물질에 따른 누설전류 현상들이 고찰되었고, 이에 관한 많은 전도기구 모델들이 제시되었다. Schottky emission, Poole-Frenkel emission, space charge limited conduction 등이 그 대표적인 예이다. 하지만 아쉽게도 BST 박막의 정확한 누설 전류 전도 기구를 완전히 설명하는데는 아직 한계가 있다. 따라서 본 연구에서는 제작된 BST 커패시터 내의 기본적인 전기적 성질을 조사하고, 정확한 누설전류 기구 규명에 초점을 두고자 한다. 이를 위해 기존의 여러 기구들과 비교 분석할 것이다. 하부전극으로 사용하기 위해 스퍼터링 방법으로 p-Si(100) 기판위에 RuO2 박막을 약 120nm 증착하였다. 증착전의 chamberso의 초기압력은 5$\times$10-6 Torr이하의 압력으로 유지시켰다. Ar/O2의 비는 이전 실험에서 최적화된 9/1로 하였다. BST 박막 증착 시 5분간 pre-sputtering을 실시한 후 하부전극 기판위에 BST 박막을 증착하였다. 증착이 끝난 후 시편을 상온까지 냉각시킨 후 꺼내었다. 전기적 특성을 측정하기 상부전극으로 RuO2와 Al 박막을 각각 상온에서 100nm 증착하였다. 이때 hole mask를 이용하여 반경이 140um인 원형의 상부전극을 증착하였다. BST 박막의 증착온도가 증가하고 Ar/O2 비가 감소할수록 제작된 BST-커패시터의 전기적 성질이 우수하였다. 증착온도 $600^{\circ}C$, ASr/O2=5/5에서 증착된 막의 누설전류는 4.56$\times$10-8 A/cm2, 유전상수는 600 정도의 값을 나타내었다. 인가전압에 따른 BST 커패시터의 transition-current는 Curie-von Schweider 모델을 따랐다. BST 박막의 누설전류 전도기구는 기존의 Schottky 모델이 아니라 modified-Schottky 무델로 잘 설명되었다. Modified-Schottky 모델을 통해 BST 박막의 광학적 유전율 $\varepsilon$$\infty$=4.9, 이동도 $\mu$=0.019 cm2/V-s, 장벽 높이 $\psi$b=0.79 eV를 구하였다.
본 논문은 IEC형 불꽃점화 시험장치를 이용하여 저압 유도회로의 최소 점화한계를 프로판-공기 5.25 Vol.%의 혼합 가스에 대하여 실험적으로 구하였으며, 또한 유도회로의 인덕턴스 L에 안전소자로서 저항을 병렬접속 하였을 경우 프로판-공기 5.25 Vol.%의 혼합 가스에 대한 점화한계 개선효과를 고찰하였다. 그 결과, 최소 점화한계는 전류의 크기에 따라 좌우되었다. 또한, 전원으로부터 공급되는 에너지는 인덕턴스에 우선 축적되고, 그 초과분의 에너지가 폭발성 가스의 점화원으로 작용하였다. 점화한계 개선효과는 인덕턴스가 300mH일 때, 최고 330%의 개선효과가 나타났으며 인덕턴스가 클수록 점화한계 개선효과가 크게 나타났다. 또한 병렬로 접속한 저항의 크기가 적을수록 점화한계 개선 효과가 크다. 본 연구결과는 본질안전 방폭형 전기기기의 연구개발을 위한 기본자료로 활용할 수 있을 뿐만 아니라 이들 기기의 방폭 성능에 대한 시험자료로도 활용이 가능할 것으로 사료된다.
1947년 트랜지스터의 발명을 시작으로 사이리스터, MOSFET 및 IGBT 등의 전력반도체 소자가 개발되면서 산업, 가전 및 통신 등의 다양한 분야에서 실리콘 기반의 전력반도체 소자가 활용되고 있다. 개발 당시에는 10A/수백V 정도의 전류통전능력 및 전압저지능력을 가지고 있었지만, 현재에는 8000A/12kV급의 대용량 소자까지 생산되고 있다. 이러한 전력반도제 소자는 다양한 응용분야에 서 높은 전압 저지능력, 큰 전류 통전 능력 및 빠른 스위칭 특성을 요구하고 있다. 특히 최근의 전력변환장치들은 고온동작특성 및 고효율화에 대한 요구가 더욱 강조되고 있다. 일반적인 실리콘 전력반도체소자는 물질적인 특성한계로 고온에 서의 동작 시 소자 특성이 떨어지는 특징을 보이고 있어 고온 환경에 적합한 전력반도체 소자의 필요성이 증가되어 실리콘에 비해 밴드�b이 넓은 SiC 및 GaN 등의 wide bandgap 반도체 물질의 연구가 활발히 진행되고 있다. 특히 SiC는 단결정 성장을 통한 웨이퍼화가 용이하고 소자 제작공정이 기존 실리콘공정과 유사하여 많은 연구가 진행되었으며 일부 소자에서 상용화가 진행되었다. 본고에서는 현재 활발히 진행되고 있는 탄화규소 전력반도체소자의 기술동향에 대해 소개하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.