• Title/Summary/Keyword: 학습 제어기

Search Result 378, Processing Time 0.026 seconds

Performance analysis of learning algorithm for a self-tuning fuzzy logic controller (자기 동조 퍼지 논리 제어기를 위한 학습 알고리즘의 성능 분석)

  • 정진현;이진혁
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.11
    • /
    • pp.2189-2198
    • /
    • 1994
  • In this paper, a self-tuning fuzzy logig controller is implemented to control a DC servo motor by the self-tuning technique based on fuzzy meta-rules with learning in several algorithms to improve the performance of the fuzzy logic controller used in a fuzzy control system. Simulations and experimental results of the self-tuning fuzzy logic controller are compared with those of the fuzzy logic controller to evaluate its performance.

  • PDF

신경망을 이용한 하이브리드 학습 제어 알고리즘의 연구

  • 고영철;왕지남
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.71-74
    • /
    • 1996
  • 본 연구에서는 반복 학습제어 이론을 기초로 하는 하이브리드 신경망 제어기를 제안한다. 신경망으로는 백프로퍼게이션(backpropagation) 신경망을 사용하고, 기존의 반복 학습 제어 이론의 단점을 보안한 제어 알고리즘을 제안한다. 백프로퍼게이션 신경망의 맵핑(mapping)의 특징으로 원하는 목표 패턴에 추종할 수 있는 출력 패턴을 생성하고 반복 학습에 소요되는 학습시간을 줄일 수 있다. 실험결과에서 보듯이 제안된 제어 알고리즘은 목표패턴에 수렴함을 알 수 있다. 제시한 알고리즘은 CD-ROM 드라이브와 같은 광디스크 드라이브류의 초점 제어 등에 응용할 수 있다.

  • PDF

The Environmental Control System using Speech Recognition (음성인식을 이용한 생활환경 제어장치)

  • 정혁준;임재용;이행세;오문식
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.141-144
    • /
    • 2000
  • 일반인들은 음성인식을 이용한 생활보조기구들의 필요성이 적지만 장애인이나 노인들은 가족이나 주변인의 도움을 받지 않고서는 가전제품의 작동이나 전화통화 등과 같은 일을 스스로 하기에는 쉽지 않다. 이러한 사람들에게 각 가정에 널리 보급되어 있는 PC를 이용하여서 타인의 도움을 받지 않고서도 간편하게 사용할 수 있게 음성을 이용한 생활보조기구들 제어에 응용하였다본 음성인식기는 음성의 끝점 검출, 음성의 특징계수 추출, 백터 양자화 학습 및 인식, HMM학습 그리고 HMM인식으로 나누어져 있다. 그리고 그 인식 결과에 따라 생활보조기구등을 제어하였다. 이러한 음성인식기를 만드는 것은 노인이나 장애인들에게 자신이 혼자할수 없는 생활의 편리함을가져다 주기 위함이고 일반정상인에게도 많은 편리함을 가져다 주기 위함이다. 그러나 언어 학습과정에서 노인이나 환자는 학습에 어려움이 있어 적은 학습으로도 인식되어야하는 과제가 남아있다.

  • PDF

Design of a Fuzzy Controller Using the Parallel Architecture of Random Signal-based Learning (병렬형 랜덤 신호 기반 학습을 이용한 퍼지 제어기의 설계)

  • Han, Chang-Wook;Oh, Se-Jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.62-66
    • /
    • 2011
  • This paper proposes a parallel architecture of random signal-based learning (PRSL), merged with simulated annealing (SA), to optimize the fuzzy logic controller (FLC). Random signal-based learning (RSL) finds the local optima very well, whereas it can not finds the global optimum in a very complex search space because of its serial nature. To overcome these difficulties, PRSL, which consists of serial RSL as a population, is considered. Moreover, SA is added to RSL to help the exploration. The validity of the proposed algorithm is conformed by applying it to the optimization of a FLC for the inverted pendulum.

Vibration Control for Structures based on Modal Energy based Neural Networks (모드에너지 기반 신경망을 사용한 구조물의 진동제어)

  • Chang, Seong-Kyu;Kim, Doo-Kie;Kim, Ki-Hong;Kim, Yun-Seok;Lee, Seung-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.53-56
    • /
    • 2011
  • 본 논문에서는 지진시 구조물의 진동을 줄이기 위한 방법으로 모드에너지 기반 신경망 제어 방법을 제안하였다. 모드에너지 기반 신경망 제어 방법은 신경망의 학습 과정에서 구조물의 모드 에너지를 이용하여 목적함수를 구성하며, 이 목적함수를 최소로 하는 학습을 진행한다. 제안된 제어 알고리즘의 적용성을 검증하기 위해서 능동질량감쇠기(AMD, Active Mass Damper)가 설치된 3층 구조물을 예제 모델로 선택하였으며, El Centrol지진을 이용하여 모드에너지기반 신경망제어 알고리즘을 학습시켰다. 모드에너지 기반 신경망 제어 알고리즘의 제어 성능은 학습 후 임의의 지진에 대한 하중으로 California지진을 사용하여 검증하였다. 해석 결과에서 California지진에 대한 제어 전 후의 결과와 기존의 방법인 MLP(Muli-layer Perceptron)의 결과와 비교하였다. 또한 제안된 제어 방법을 적용할 때, 지진시 구조물의 비선형 거동은 제어후 거의 보이지 않는 것을 확인 할 수 있었다.

  • PDF

Design of Wavelet Neural Network Based Indirect Adaptive Controller Using EKF Training Method (확장 칼만 학습 알고리듬을 이용한 웨이블릿 신경 회로망 기반 간접 적응 제어기 설계)

  • Kim, Kyung-Ju;Oh, Joon-Seop;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.361-363
    • /
    • 2004
  • 시간 및 주파수 특성 분석이 용이한 웨이블릿을 신경회로망에 적용시킨 웨이블릿 신경 회로망의 파라미터 학습 방법에는 오차 역전파 알고리듬 및 유선 알고리듬 등 여러 가지 방법이 있으나 이러한 학습 방법들은 수렴 시간이 오래 걸리는 단점을 가진다. 따라서 본 논문에서는 웨이블릿 신경 회로망의 최적 파라미터를 결정하기 위한 학습 방법으로 일반적으로 비선형 시스템 추정에 주로 사용되는 확장 칼만 필터 알고리듬을 적용한 신경회로망을 제안한다. 또한 제안된 학습 알고리듬을 이용한 웨이블릿 신경 회로망으로 간접 적응 제어기를 설계하여 연속 시간 혼돈 시스템인 Duffing 시스템의 제어에 적용함으로써 확장 칼만 필터 학습 알고리듬을 적용한 웨이블릿 신경 회로망 모델의 우수성을 보인다.

  • PDF

Adaptive Noise Canceling by Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 능동 소음제거)

  • Park, Hee-Kyoung;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.471-473
    • /
    • 1998
  • 본 논문에서는 뉴로-퍼지 제어기를 이용한 능동 소음제어기를 구현하였다. 능동 소음제어기는 잡음에 의하여 왜곡된 신호로부터 잡음을 제거하여 원 신호를 복원하는 제어시스템이다. 일반적으로 잡음의 특성이 시간에 따라 변화하고, 전달특성이 비선형적이므로 고정된 제어기에 의해서는 제어할 수 없다. 이 논문에서는 뉴로-퍼지 제어기를 사용하였고, 파라미터를 오차 역전과 학습을 통하여 변화시킴으로써 잡음의 특성에 효과적으로 적응하는 능동 소음제어기를 구성하였다. 시뮬레이션을 통하여 여러 종류의 신호에 대해서 랜덤 노이즈를 발생시키고 구성된 제어기의 성능을 확인하였다.

  • PDF

A Study on the Direct Neural Network Controller of Boiler Turbine (직접신경회로망 제어기를 사용한 보일러 터빈시스템의 제어에 관한 연구)

  • Woo, Joo-Hee;Kim, Jong-An
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.654-656
    • /
    • 1997
  • 본 논문에서는 직접신경회로망제어기(DNNC)를 사용하여 결합된 PI제어기의 이득을 구하여 보일러 터빈시스템을 제어하고자 한다. 직접신경회로망제어기는 플랜트의 동특성을 학습시키는 에뮬레이터 없이 제어입력에 대한 플랜트의 동작방향에 대한 정보만을 사용하여 신경회로망을 학습시키고, 이 신경회로망을 사용하여 제어대상 플랜트인 다중입출력플랜트를 제어하기 위하여 결합된 PI 제어기의 이득을 구한다. 컴퓨터 시뮬레이션을 통하여 제안한 알고리즘의 타당성을 입증하고자 한다.

  • PDF

Memory Controller Architecture with Adaptive Interconnection Delay Estimation for High Speed Memory (고속 메모리의 전송선 지연시간을 적응적으로 반영하는 메모리 제어기 구조)

  • Lee, Chanho;Koo, Kyochul
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.168-175
    • /
    • 2013
  • The delay times due to the propagating of data on PCB depend on the shape and length of interconnection lines when memory controllers and high speed memories are soldered on the PCB. The dependency on the placement and routing on the PCB requires redesign of I/O logic or reconfiguration of the memory controller after the delay time is measured if the controller is programmable. In this paper, we propose architecture of configuring logic for the delay time estimation by writing and reading test patterns while initializing the memories. The configuration logic writes test patterns to the memory and reads them by changing timing until the correct patterns are read. The timing information is stored and the configuration logic configures the memory controller at the end of initialization. The proposed method enables easy design of systems using PCB by solving the problem of the mismatching caused by the variation of placement and routing of components including memories and memory controllers. The proposed method can be applied to high speed SRAM, DRAM, and flash memory.

Building of Remote Control System for Steering Gear Using Miniature Ship (모형선박을 이용한 원격 조타제어시스템의 구축)

  • 서기열;홍태호;김화영;박계각
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.287-291
    • /
    • 2003
  • 현대의 선박운항에 있어서 선내 노동의 경감과 운항의 안정성 및 경제성 확보를 위하여 선박 자동화 및 원격 조종화가 이루어지고 있다. 또한, 선박조종 및 작업제어를 위하여 컴퓨터를 이용한 통합제어 시스템에 관한 연구도 활발하게 진행되고 있다. 그러나 소형선박 빛 어선과 같은 환경에서의 지능형 시스템에 관한 연구는 많이 부족한 실정이다. 인공지능기법을 이용하여 보다 인간 친화적인 시스템을 구현하고, 음성인식기술을 이용하여 원격으로 선박 조타기를 제어하여 조업자의 부담경감 및 인원절감의 효과를 가져올 수 있는 선박 조종시스템의 개발이 절실하다. 본 논문에서는 PC를 기반으로 하여 원격으로 모형 선박의 조타기를 제어하는 시스템을 구축하였다. 구체적인 연구 방법으로는, 음성인식기술과 지능형 학습 기법을 바탕으로 음성지시기반학습 시스템을 구축하고, 퍼지 조타수 조작모델을 구현하여 PC 기반 원격 제어시스템을 구현하였다. 또한, 구축된 원격 조타제어시스템을 축소된 선박모형(Miniature Ship) 시스템에 적용하여 그 효용성을 확인하였다.

  • PDF