• Title/Summary/Keyword: 학습 전술

Search Result 32, Processing Time 0.023 seconds

Scenario-based Future Infantry Brigade Information Distribution Capability Analysis (시나리오 기반의 미래 보병여단 정보유통능력 분석 연구)

  • Junseob Kim;Sangjun Park;Yiju You;Yongchul Kim
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.139-145
    • /
    • 2023
  • The ROK Army is promoting cutting-edge, future-oriented military development such as a mobile, intelligent, and hyper-connected Army TIGER system. The future infantry brigade plans to increase mobility with squad-level tactical vehicles to enable combat in multi-domain operations and to deploy various weapon systems such as surveillance and reconnaissance drones. In addition, it will be developed into an intelligent unit that transmits and receives data collected through the weapon system through a hyper-connected network. Accordingly, the future infantry brigade will transmit and receive more data. However, the Army's tactical information communication system has limitations in operating as a tactical communication system for future units, such as low transmission speed and bandwidth and restrictions on communication support. Therefore, in this paper, the information distribution capability of the future infantry brigade is presented through the offensive operation scenario and M&S.

Adaptive Strategy Planning Using Goal-oriented Learning (목적 지향적 학습을 이용한 적응적 전술 생성 시스템 설계)

  • Park, Jong-An;Hong, Chul-Eui;Kim, Won-Il
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.42-48
    • /
    • 2011
  • Agent acts for specification purpose, which is common element of CGF (Computer Generated Forces). When basic agent acts as planned, the advanced intelligence agent can do more than this. It can follow predefined actions along appointed script to achieve purpose or lay another plans when it is difficult to achieve. In other words, it can amend plan again or make new plan in order to achieve goals. When plan fails, agent amends oneself, possibly decreases target level to achieve easily. In doing so, the agent calculates a quantitative value for changing plans in realtime, and choose appropriate alternative plans when the threshold value reaches an limit. In this paper, we propose an military system in which the planned action can be modified according to the level of achievement and alternative plans can be generated accordingly.

Proximal Policy Optimization Reinforcement Learning based Optimal Path Planning Study of Surion Agent against Enemy Air Defense Threats (근접 정책 최적화 기반의 적 대공 방어 위협하 수리온 에이전트의 최적 기동경로 도출 연구)

  • Jae-Hwan Kim;Jong-Hwan Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.2
    • /
    • pp.37-44
    • /
    • 2024
  • The Korean Helicopter Development Program has successfully introduced the Surion helicopter, a versatile multi-domain operational aircraft that replaces the aging UH-1 and 500MD helicopters. Specifically designed for maneuverability, the Surion plays a crucial role in low-altitude tactical maneuvers for personnel transportation and specific missions, emphasizing the helicopter's survivability. Despite the significance of its low-altitude tactical maneuver capability, there is a notable gap in research focusing on multi-mission tactical maneuvers that consider the risk factors associated with deploying the Surion in the presence of enemy air defenses. This study addresses this gap by exploring a method to enhance the Surion's low-altitude maneuvering paths, incorporating information about enemy air defenses. Leveraging the Proximal Policy Optimization (PPO) algorithm, a reinforcement learning-based approach, the research aims to optimize the helicopter's path planning. Visualized experiments were conducted using a Surion model implemented in the Unity environment and ML-Agents library. The proposed method resulted in a rapid and stable policy convergence for generating optimal maneuvering paths for the Surion. The experiments, based on two key criteria, "operation time" and "minimum damage," revealed distinct optimal paths. This divergence suggests the potential for effective tactical maneuvers in low-altitude situations, considering the risk factors associated with enemy air defenses. Importantly, the Surion's capability for remote control in all directions enhances its adaptability in complex operational environments.

Game Agent Learning with Genetic Programming in Pursuit-Evasion Problem (유전 프로그래밍을 이용한 추격-회피 문제에서의 게임 에이전트 학습)

  • Kwon, O-Kyang;Park, Jong-Koo
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.253-258
    • /
    • 2008
  • Recently, game players want new game requiring more various tactics and strategies in the complex environment beyond simple and repetitive play. Various artificial intelligence techniques have been suggested to make the game characters learn within this environment, and the recent researches include the neural network and the genetic algorithm. The Genetic programming(GP) has been used in this study for learning strategy of the agent in the pursuit-evasion problem which is used widely in the game theories. The suggested GP algorithm is faster than the existing algorithm such as neural network, it can be understood instinctively, and it has high adaptability since the evolving chromosomes can be transformed to the reasoning rules.

Developing artificial football agents based upon multi-agent techniques in the AI world cup (AI World Cup 환경을 이용한 멀티 에이전트 기반 지능형 가상 축구 에이전트 구현)

  • Lee, Eunhoo;Seong, Hyeon-ah;Jung, Minji;Lee, Hye-in;Joung, Jinoo;Lee, Eui Chul;Lee, Jee Hang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.819-822
    • /
    • 2021
  • AI World Cup 환경은 다수 가상 에이전트들이 팀을 이뤄서 서로 상호작용하며 대전이 가능한 가상 축구 환경이다. 본 논문에서는 AI World Cup 환경에서 멀티 에이전트기반 학습/추론 기술을 사용하여 다양한 전략과 전술을 구사하는 가상 축구 에이전트 구현과 시뮬레이션 결과를 소개한다. 먼저, 역할을 바탕으로 협동하여 상대방과 대전할 수 있는 논리 기반 추론형 멀티 에이전트 기술이 적용된 Dynamic planning 축구 에이전트 9 세트를 구현하였다. 이후, 강화학습 에이전트 기반, 단일 에이전트를 조합한 Independent Q-Learning 방식의 학습형 축구 에이전트를 구현한 후, 이를 멀티 에이전트 강화학습으로 확장하여 역할 기반 전략 학습이 가능한 가상 축구 에이전트를 구현하고 시뮬레이션 하였다. 구현된 가상 축구 에이전트들 간 대전을 통해 승률을 확인하고, 전략의 우수성을 분석하였다. 시뮬레이션 예제는 다음에서 확인할 수 있다 (https://github.com/I-hate-Soccer/Simulation).

Development of the Educational Media(3D lenticular cards, flash games, and board games) using Koguryo chess characters. (고구려 장기 캐릭터를 적용한 매체 개발 (3D 카드, 플래시게임, 보드게임))

  • Kim, jung-eun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.235-236
    • /
    • 2011
  • 아동에게 적합한 고구려 장기 게임 개발을 위해 Bruner의 EIS 이론을 근거로, 역사상 가장 강력한 힘의 나라였던 고구려 문화를 담은 캐릭터 8종을 개발하였다. 장기 게임은 아동의 집중력과 사고 발달에 유용하며 두뇌발달과 학습향상에 효과적이지만, 본격적인 장기 게임을 하기까지 장기말 종류, 장기말 움직이는 방법, 장기말 배치, 기본 전술 등 익혀야 할 요소가 많고 이것을 배우는 과정이 지루하며 어렵다. 따라서 말의 종류와 이동 방법을 흥미롭게 익힐 수 있도록 3D카드와 플래시 게임을 개발하였고, 캐릭터를 적용한 보드게임을 제작해 보았다.

  • PDF

A Study on Generative Artificial Intelligence-Based Data Augmentation Techniques for Enhancing Object Detection Performance (객체 탐지 성능 향상을 위한 생성형 인공지능 기반 데이터 증강 기법 연구)

  • Dohee Kim;Myongho Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.51-54
    • /
    • 2023
  • 최근 딥러닝 기술의 발달로 물체 탐지를 위한 객체 인식 분야가 기계학습을 접목한 연구가 급격히 증가하고 있다. 하지만, 탐지하려는 물체가 다른 객체에 가려진 경우와 같이 특수한 상황에 대한 데이터의 수량이 부족하여 성능 저하를 야기한다는 점과, 객체 탐지 수행 과정에서 작은 객체의 탐지가 어렵다는 한계점이 있다. 본 연구는 전술한 문제점을 보완할 방법을 제안한다. 데이터 증강 기법을 이용하여 클래스가 부족한 데이터의 양을 늘려 학습 데이터를 증강시켰다. 한편, SRGAN을 사용하여 작은 객체를 확대시킨 뒤 이미지를 합성시켜 데이터를 구성하였다. 제안된 방법은 PyTorch 환경에서 YOLOv5를 수행한 결과, 객체 탐지 성능이 향상되는 것을 확인할 수 있었다.

  • PDF

Multi-Agent Reinforcement Learning Model based on Fuzzy Inference (퍼지 추론 기반의 멀티에이전트 강화학습 모델)

  • Lee, Bong-Keun;Chung, Jae-Du;Ryu, Keun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.51-58
    • /
    • 2009
  • Reinforcement learning is a sub area of machine learning concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. In the case of multi-agent, especially, which state space and action space gets very enormous in compared to single agent, so it needs to take most effective measure available select the action strategy for effective reinforcement learning. This paper proposes a multi-agent reinforcement learning model based on fuzzy inference system in order to improve learning collect speed and select an effective action in multi-agent. This paper verifies an effective action select strategy through evaluation tests based on Robocup Keepaway which is one of useful test-beds for multi-agent. Our proposed model can apply to evaluate efficiency of the various intelligent multi-agents and also can apply to strategy and tactics of robot soccer system.

Estimation of the streamflow during dry season using artificial neural network (인공신경망을 이용한 갈수기 수문량 산정)

  • Jung, Sung Ho;Cho, Hyo Seob;Kim, Jeong Yup;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.377-377
    • /
    • 2019
  • 본 연구에서는 LSTM 모형을 이용하여 갈수예보를 위한 월 단위 전망모형개발의 대상지점으로 이수 및 치수의 측면에서 아주 중요한 한강대교 지점을 선정하였으며 유량예보를 위하여 한강수계 19개 기상관측소의 월평균강수량, 월평균기온 및 3개 댐(소양,횡성,충주)의 월방류량을 사용하여 한강대교의 월 유량을 예측하였다. 1996년부터 2016년까지의 자료는 모형의 학습, 2017년 자료는 모형의 검증에 활용하였으며 가장 최근 건설된 횡성댐 방류량의 경우 1996년~2000년의 자료가 없으므로 2001년~2005년의 자료를 반복하여 학습에 활용하였다. 모형의 예측결과는 신경망 학습 시 한강대교 월유량자료를 포함한 결과와 미포함 결과를 도출하였으며, 모의결과의 재현성 분석을 위하여 월별 예측값과 실측값의 비율을 산정하였으며 1월부터 12월까지 12개 값을 평균하여 평균예측률을 산정하고 이를 홍수기(6월~10월) 및 비홍수기(1월~5월, 11월~12월)를 구분하였다. 딥러닝 학습 시 월유량을 포함한 경우의 예측결과가 학습 시 월유량을 포함하지 않았을 경우보다 상대적으로 좋은 정확도를 보이는 것으로 분석되었다. 다만, 신경망을 실제 갈수예보에 활용하기 위해서는 예측 기상정보인 월강우량, 월평균기온, 댐방류량만을 활용하여야 하는데 학습 시월유량 미포함 결과는 예측률이 매우 낮았으며, 신경망의 학습횟수가 늘어날 경우 학습자료 과적합(over-fitting)되어 정확도가 보다 저하되는 것으로 나타났다. 그래서 기존의 현재시간 t까지의 입력자료로 학습 후 익월(t+1)의 월유량을 예측하는 (t $\rightarrow$ t+1) 방법에서 현재시점 (t-n ~ t)까지의 입력자료를 이용하여 당월(t)의 월유량을 산정하는 (t$\rightarrow$t) 방법으로 재학습 후 모형검증을 수행한 결과 전술한 익월(t+1) 유량을 예측한 결과보다 재현성이 훨씬 향상된 것으로 분석되며평균예측률이 0.99로 홍수기 및 비홍수기에서도 뛰어난 정확성을 보이고 있다.

  • PDF

Design of Computational Thinking Instruction Based on ARCS Model in Liberal Arts Education (교양교육에서 ARCS 모형 기반의 컴퓨팅 사고력 수업 설계)

  • Jun, Soo-jin;Shin, Chwa-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.90-93
    • /
    • 2019
  • Recently, as SW education has been emphasized in college, interest in Computing Thinking (CT) class at the liberal level has increased. In order to effectively educate students, various methods of teaching and learning are required to reduce the burden on CT education and motivation of students. The purpose of this study is to design teaching and learning using ARCS model to improve learners' learning motivation and learning achievement in CT course as liberal arts education. In this study, the learning elements of CT were selected based on previous research on the characteristics of education in the liberal arts education of the university and analysis of the CT content. In addition, Keller 's ARCS learning motive model was selected to match the instructional tactics according to the motivational factors of Attention, Relevance, Confidence, and Satisfaction. In order to effectively teach these CT contents, detailed strategies based on the ARCS model were designed and presented weekly.

  • PDF