• Title/Summary/Keyword: 학습 성과 예측

Search Result 1,135, Processing Time 0.03 seconds

E-Learning Strategies Affecting the levels of Participation, Achievement and Satisfaction in the University Blended Learning Environment (대학교 혼합학습(Blended Learning) 환경에서 학습참여도, 학업성취도, 학습만족도에 영향을 미치는 e-러닝 학습전략)

  • Kim, Mi-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.4
    • /
    • pp.93-102
    • /
    • 2007
  • The present study is to investigate the elements of e-learning strategies affecting the levels of participation, achievement and satisfaction for learners who participated in the university blended learning environment. For this, 58 subjects were recruited who participated in the blended learning class at K university. E-learning strategies, achievement and satisfaction levels were measured for data collection, and the level of participation was measured by analyzing the LMS log-in database. For data analysis, first, means and standard deviation were computed to find the level of e-learning strategies of the subjects. Second, linear regression analysis was conducted to find the e-learning strategies that could estimate the levels of achievement, participation and satisfaction. As a result, variables to estimate the achievement level included time management strategy and overload management strategy. Variables to estimate the participation level included self-directed strategy, time management strategy and overload management strategy. Finally, variables to estimate the satisfaction level included multiple discussion management strategy, asynchronous management strategy and sociality. Based on these estimated variables, the author suggested some ideas to increase the educational effectiveness.

  • PDF

Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting (뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간, 일간, 주간 단위 예측)

  • 박영진;황보현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.283-287
    • /
    • 2004
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시접에 해당하는 초기 구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한국전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간, 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고, 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

  • PDF

Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting (뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 시간, 일간, 주간 단위 예측)

  • Park, Young-Jin;Choi, Jae-Gyun;Wang, Bo-Hyeun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.323-326
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점에 해당하는 초기 구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한국전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

  • PDF

Performance Comparison Between Neural Network Model and Statistical Models (통계적 모델과 신경회로망 모델의 성능 비교에 관한 연구)

  • Han, Seung-Soo;Kim, In-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2401-2403
    • /
    • 2000
  • 시스템의 특성을 이해하고 신뢰성 있는 제어를 위해서는 시스템에 대한 정확한 모델을 필요로 한다. 이러한 목적을 위해서 많은 연구자들에 의한 다양한 방법의 모델링 방법이 계속되어 연구되어지고 있다. 현재 많이 사용하는 모델링 방법 중에는 통계적 기법을 이용하는 것, first principle 방법을 이용하는 것, 지능형 기법을 이용하는 방법 등이 있다. 본 연구에서는 통계적 방법인 fractional factorial 방법을 이용한 모델, Taguchi 방법을 이용한 모델, 그리고 지능형 방법인 신경회로망을 이용한 모델의 3가지 모델을 사용해서 각 모델의 학습오차와 예측오차 등의 특성을 비교하였다. 모델에 사용된 데이터는 비선형 시스템인 플라즈마 화학 증착 장비(Plasma-Enhnaced Chemical Vapor Deposition : PECVD)에 의해 증착된 산화막 실험 데이터이다. 각 모델에 대해서 PECVD 데이터를 사용하여 모델을 만들었을 때 각 모델의 학습오차와 학습오차 변위, 그리고 예측오차와 예측오차변위를 조사하였다. 세가지 모델 모두 학습오차가 예측오차보다 작았으며 변위 또한 학습오차변위가 예측오차변위보다 작았다. 본 연구 결과는 일반적으로 신경회로망에 의한 오차가 다른 통계적인 방법에 의한 오차보다 작음을 보여준다.

  • PDF

Prediction of electricity consumption in A hotel using ensemble learning with temperature (앙상블 학습과 온도 변수를 이용한 A 호텔의 전력소모량 예측)

  • Kim, Jaehwi;Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.319-330
    • /
    • 2019
  • Forecasting the electricity consumption through analyzing the past electricity consumption a advantageous for energy planing and policy. Machine learning is widely used as a method to predict electricity consumption. Among them, ensemble learning is a method to avoid the overfitting of models and reduce variance to improve prediction accuracy. However, ensemble learning applied to daily data shows the disadvantages of predicting a center value without showing a peak due to the characteristics of ensemble learning. In this study, we overcome the shortcomings of ensemble learning by considering the temperature trend. We compare nine models and propose a model using random forest with the linear trend of temperature.

Management Automation Technique for Maintaining Performance of Machine Learning-Based Power Grid Condition Prediction Model (기계학습 기반 전력망 상태예측 모델 성능 유지관리 자동화 기법)

  • Lee, Haesung;Lee, Byunsung;Moon, Sangun;Kim, Junhyuk;Lee, Heysun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.413-418
    • /
    • 2020
  • It is necessary to manage the prediction accuracy of the machine learning model to prevent the decrease in the performance of the grid network condition prediction model due to overfitting of the initial training data and to continuously utilize the prediction model in the field by maintaining the prediction accuracy. In this paper, we propose an automation technique for maintaining the performance of the model, which increases the accuracy and reliability of the prediction model by considering the characteristics of the power grid state data that constantly changes due to various factors, and enables quality maintenance at a level applicable to the field. The proposed technique modeled a series of tasks for maintaining the performance of the power grid condition prediction model through the application of the workflow management technology in the form of a workflow, and then automated it to make the work more efficient. In addition, the reliability of the performance result is secured by evaluating the performance of the prediction model taking into account both the degree of change in the statistical characteristics of the data and the level of generalization of the prediction, which has not been attempted in the existing technology. Through this, the accuracy of the prediction model is maintained at a certain level, and further new development of predictive models with excellent performance is possible. As a result, the proposed technique not only solves the problem of performance degradation of the predictive model, but also improves the field utilization of the condition prediction model in a complex power grid system.

The Study on Intelligent Inventory Management System (지능형 재고관리 시스템에 관한 연구)

  • 허철회;손창식;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.92-95
    • /
    • 2001
  • 제조업체에서의 재고관리 시스템은 그 적용 목적과 상황에 따라 다양한 형태가 있다. 그러나, 완제품 생산에 필요한 원자재 및 부품의 안정된 공급을 위하여 수요 예측과 경제성, 신뢰성, 운용성이 우수한 시스템 기술이 요구되고 있다. 본 논문에서는 효율적인 재고관리를 위하여 신경망을 이용한 지능적인 예측 재고관리 시스템을 설계하고, 신경망의 학습알고리즘을 적용하여 제품생산에 요구되는 자재들의 재고를 예측하고 효율적으로 관리할 수 있는 방법을 제안한다.

  • PDF

Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting: Reliability Computation (뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 신뢰도 계산)

  • Shim, Hyun-Jeong;Park, Lae-Jeong;Wang, Bo-Hyeun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.318-322
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용한 단기 전력 수요 예측시스템에서 예측치별로 신뢰도를 계산하는 체계적인 방법을 제안한다. 예측시스템의 신뢰도를 추정하는 작업은 특히 신경회로망과 같은 경험적 모델을 실제 활용하기 위해서 필수적인 연구로 인식되고 있다. 본 논문에서 제안하는 출력별 신뢰 구간 계산 방법은 지역 표현하는 뉴로-퍼지 모델의 특성을 활용하여 학습된 퍼지 규칙 각각에 대해 신뢰도를 추정하는 Local reliability measure 기법을 사용한다. 제안된 신뢰도 계산이 가능한 단기 전력 수요 예측시스템은 먼저 결정 트리를 이용하여 초기 구조를 생성하고, 이를 초기 구조 뱅크에 저장한다. 저장된 초기 구조 뱅크를 이용하여 뉴로-퍼지 모델을 학습하고, 학습된 퍼지 규칙의 신뢰도를 추정한다. 제안된 시스템의 실효성을 검증하기 위해서 한국 전력에서 수집한 1996년과 1997년의 실제 전력 수요 데이터를 이용하여 한 시간 앞의 수요를 예측하는 모의 실험을 수행하고 실험 결과를 비교 분석한다.

  • PDF

Exploration of Predictive Model for Learning Achievement of Behavior Log Using Machine Learning in Video-based Learning Environment (동영상 기반 학습 환경에서 머신러닝을 활용한 행동로그의 학업성취 예측 모형 탐색)

  • Lee, Jungeun;Kim, Dasom;Jo, Il-Hyun
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.2
    • /
    • pp.53-64
    • /
    • 2020
  • As online learning forms centered on video lectures become more common and constantly increasing, the video-based learning environment applying various educational methods is also changing and developing to enhance learning effectiveness. Learner's log data has emerged for measuring the effectiveness of education in the online learning environment, and various analysis methods of log data are important for learner's customized learning prescriptions. To this end, the study analyzed learner behavior data and predictions of achievement by machine learning in video-based learning environments. As a result, interactive behaviors such as video navigation and comment writing, and learner-led learning behaviors predicted achievement in common in each model. Based on the results, the study provided implications for the design of the video learning environment.

Emerging Technology Trends in e-Learning and Learning Analysis Technology (이러닝과 학습분석 기술에 대한 신흥기술 동향)

  • Lee, Myung-Suk;Pak, Ju-Geon;Lee, Joo-Hwa
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.337-339
    • /
    • 2021
  • 본 연구는 최근 펜데믹 위기에서 교육의 변화하는 모습을 점검하고 미래의 학습에 대한 모습들을 예측하기 위해 이러닝과 학습분석에 대한 신흥기술의 동향을 살펴보고자 한다. 연구방법으로 신흥기술의 '하이프 사이클'과 '이러닝 예측 하이프 커버'를 기반으로 하여 각 단계별 기술들을 점검하고 펜데믹 위기에서 더 공고히 된 이러닝과 학습 관련 기술들이 무엇인지 살펴본다. 또한 하이프 사이클의 5단계인 기술촉발 단계, 부풀려진 기대의 정점 단계, 환멸 단계, 계몽 단계, 생산성 안정 단계인 각 단계별 학습과 관련된 기술들은 어떤 것이 있으며, 그 기술들이 이러닝과 학습분석에 어떠한 영향을 미칠 것인지 예측해 본다. 향후 연구로는 본 연구를 기반으로 인공지능이 이러닝과 학습분석에서의 역할을 알아보고자 한다.

  • PDF