• 제목/요약/키워드: 학습 데이터

검색결과 6,438건 처리시간 0.037초

정규화를 이용한 변동계수 기반 안개 특징의 하드웨어 구현 (Hardware Implementation of Fog Feature Based on Coefficient of Variation Using Normalization)

  • 강의진;강봉순
    • 한국정보통신학회논문지
    • /
    • 제25권6호
    • /
    • pp.819-824
    • /
    • 2021
  • 자율 주행이나 CCTV와 같이 영상 처리 관련 기술들이 발전함에 따라 영상 왜곡에 대한 문제점을 개선하기 위해 단일 영상을 이용한 안개 제거 알고리즘이 연구되고 있다. 안개 밀도 예측 방법으로는 깊이 맵을 생성하여 영상의 깊이를 추정하는 방법이 있고, 깊이 맵의 학습 데이터로 다양한 안개 특징을 사용할 수 있다. 또한 안개 제거 알고리즘을 실제 기술들에 적용하기 위해 고화질 영상을 실시간으로 처리할 수 있는 하드웨어 구현은 필수적이다. 본 논문에서는 변동계수 기반의 안개 특징인 NLCV(Normalize Local Coefficient of Variation)를 하드웨어로 구현한다. 제안하는 하드웨어는 Xilinx 사의 xczu7ev-2ffvc1156을 Target device로 FPGA 구현하였다. Vivado 프로그램을 통해 합성한 결과 479.616MHz의 최대 동작 주파수를 가지며 4K UHD(3840×2160) 환경에서 실시간 처리 가능함을 보인다.

중학생의 독서방법, 자기효능감이 진로성숙에 미치는 영향 (The Effects of Middle School Students' Reading Methods and Self-Efficacy on Career Maturity)

  • 전지연;김기영
    • 정보관리학회지
    • /
    • 제38권2호
    • /
    • pp.129-152
    • /
    • 2021
  • 청소년의 진로 교육에서 다양한 교육적 시도가 이루어지고 있음에도 불구하고 진로성숙에 필요한 독서 방법을 제시하지 못하고 있다. 본 연구에서는 인지적 관점에서의 독서가 진로성숙에 미치는 영향을 파악하고 이 과정에서 자기효능감의 매개효과를 확인하고자 한다. 2015 개정 교육과정에 제시된 독서방법을 차용하였으며 중학생을 대상으로 인터뷰를 진행하고 설문 데이터를 통계적으로 분석하여 독서방법, 자기효능감, 진로성숙의 관계를 확인하였다. 연구 결과 비판적 읽기는 진로 결정성, 확신성에 영향을 주며 감상적 읽기와 창의적 읽기는 진로 준비성에 영향을 미쳤다. 또한 비판적 읽기는 자기효능감의 자신감, 자기조절효능감, 과제난이도선호에 영향을 미치고 창의적 읽기는 자기조절효능감에 영향을 미쳤다. 비판적 읽기는 자기효능감을 매개하여 진로성숙에 영향을 주는 것을 확인하였다. 본 연구는 진로독서교육에서 진로성숙과 자기효능감 발달을 위한 학습요소를 밝혔다는 점에서 의의가 있다.

합성곱-장단기 기억 신경망의 하이브리드 결합 모델을 이용한 부정맥 분류 (Arrhythmia Classification using Hybrid Combination Model of CNN-LSTM)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.76-84
    • /
    • 2022
  • 부정맥은 심장 박동이 비정상 혹은 불규칙하게 뛰고 있는 상태를 말하며, 실신이나 심장돌연사 등과 같은 위험한 상황을 유발할 수 있기 때문에 이의 조기 검출은 매우 중요하다. 하지만 심전도 신호의 개인차로 인해 분류 시 성능하락이 나타날 수밖에 없다. 본 연구에서는 CNN-LSTM 하이브리드 결합 모델을 이용한 부정맥 분류 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG 신호에서 R파를 검출하고 단일 비트 세그먼트를 추출하였다. 이후 부정맥 신호의 특징을 세밀하게 추출하도록 8개의 합성곱 계층으로 구성하고 이를 LSTM의 입력으로 사용한 후 가중치를 학습시키고 검증 데이터로 모델을 평가한 후 정상 및 부정맥 분류의 변화를 확인하였다. 제안한 방법의 타당성 검증을 위해 MIT-BIH 부정맥 데이터베이스를 사용하여 정확도(accuracy), 정밀도(precision), 재현율(recall), F1 스코어가 사용되었다. 성능평가 결과, 정확도, 정밀도, 재현율, F1 스코어는 각각 92.3%, 90.98%, 92.20%, 90.72%의 우수한 분류율을 나타내었다.

딥페이크 영상 학습을 위한 데이터셋 평가기준 개발 (Development of Dataset Evaluation Criteria for Learning Deepfake Video)

  • 김량형;김태구
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.193-207
    • /
    • 2021
  • As Deepfakes phenomenon is spreading worldwide mainly through videos in web platforms and it is urgent to address the issue on time. More recently, researchers have extensively discussed deepfake video datasets. However, it has been pointed out that the existing Deepfake datasets do not properly reflect the potential threat and realism due to various limitations. Although there is a need for research that establishes an agreed-upon concept for high-quality datasets or suggests evaluation criterion, there are still handful studies which examined it to-date. Therefore, this study focused on the development of the evaluation criterion for the Deepfake video dataset. In this study, the fitness of the Deepfake dataset was presented and evaluation criterions were derived through the review of previous studies. AHP structuralization and analysis were performed to advance the evaluation criterion. The results showed that Facial Expression, Validation, and Data Characteristics are important determinants of data quality. This is interpreted as a result that reflects the importance of minimizing defects and presenting results based on scientific methods when evaluating quality. This study has implications in that it suggests the fitness and evaluation criterion of the Deepfake dataset. Since the evaluation criterion presented in this study was derived based on the items considered in previous studies, it is thought that all evaluation criterions will be effective for quality improvement. It is also expected to be used as criteria for selecting an appropriate deefake dataset or as a reference for designing a Deepfake data benchmark. This study could not apply the presented evaluation criterion to existing Deepfake datasets. In future research, the proposed evaluation criterion will be applied to existing datasets to evaluate the strengths and weaknesses of each dataset, and to consider what implications there will be when used in Deepfake research.

딥러닝의 패턴 인식능력을 활용한 주택가격 추정 (How the Pattern Recognition Ability of Deep Learning Enhances Housing Price Estimation)

  • 김진석;김경민
    • 한국경제지리학회지
    • /
    • 제25권1호
    • /
    • pp.183-201
    • /
    • 2022
  • 주택가격을 정확히 추정하기 위한 많은 연구가 진행되어 왔다. 선행연구들은 주택의 고유 특성과 인근 지역 특성을 통제하는 계량경제모형을 활용한 분석이 많았다. 본 연구에서는 인공신경망 모형(ANN)을 활용하여 주택가격을 추정하였다. 딥러닝 기술의 장점은 변수 간의 복잡하고 비선형적인 특성을 모델링하고 데이터의 패턴을 인식할 수 있다는 것이다. 본 연구에서는 부동산 시장에서 공간적 분포도 패턴으로 인식할 수 있다는 가정하에 지리좌표를 설명변수로 ANN에 투입하였다. 선형회귀분석과 ANN 모형 간 비교 결과, 선형 모형 대비 ANN 모형의 설명력이 높았으며, 특히 ANN 모형은 지리좌표를 투입하였을 때 더 높은 정확도를 보여주었다. 또한 ANN 모형의 경우 지리좌표를 통해 모형 잔차의 공간적 자기 상관성이 크게 감소하였다는 점을 확인하였다. 이를 통해 ANN 모형의 패턴인식 능력을 활용하면 공간적 패턴을 학습시킴으로써 주택가격을 정확히 추정할 수 있음을 밝혔다.

The Artificial Intelligence Literacy Scale for Middle School Students

  • Kim, Seong-Won;Lee, Youngjun
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권3호
    • /
    • pp.225-238
    • /
    • 2022
  • 인공지능 리터러시에 대한 중요성이 증가하고 있지만, 인공지능 리터러시를 측정하기 위한 검사 도구가 부족한 상황이다. 따라서 본 연구에서는 중학생의 인공지능 리터러시를 측정하기 위한 검사 도구를 개발하였다. 검사 도구 개발을 위하여 전문가 집단을 구성하고, 검사 도구의 요인과 문항을 개발하였다. 개발한 검사 도구의 신뢰도와 타당도를 확보하기 위하여 현장 적합성 검토, 탐색적 요인 분석, 확인적 요인 분석을 진행하였다. 이러한 연구를 통하여 6개의 하위 영역과 30개의 문항을 가진 검사 도구를 개발하였다. 검사 도구의 하위 영역은 인공지능의 사회적 영향(8문항), 인공지능의 이해(6문항), 인공지능 실행 계획(5문항), 인공지능 문제 해결(5문항), 데이터 리터러시(4문항), 인공지능 윤리(2문항)가 있다. 검사 도구는 5점 리커트 척도로 응답하게 개발되었으며, 내적 일치도 계수는 전체가 .970이며, 하위 영역은 .861~.939이었다. 본 연구는 인공지능 리터러시의 발달 과정 분석, 교수-학습, 교육과정 등의 연구에 활용될 수 있다.

음표 임베딩과 마디 임베딩을 이용한 곡의 생성 및 정량적 평가 방법 (Creating Songs Using Note Embedding and Bar Embedding and Quantitatively Evaluating Methods)

  • 이영배;정성훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.483-490
    • /
    • 2021
  • 인공신경망을 이용해서 기존 곡을 학습시키고 새로운 곡을 생성하기 위해서는 전처리 과정으로 곡을 신경망이 인식할 수 있는 숫자로 변환해야 하며, 지금까지는 원-핫 인코딩이 사용되어 왔다. 본 논문에서는 음표 임베딩과 마디 임베딩을 제안하고 기존의 원-핫 인코딩과 성능을 비교하였다. 성능비교는 어떤 방식이 작곡가가 작곡한 곡과 유사한 곡을 생성하는지를 정량적 평가에 근거해서 수행하였으며, 평가방법으로는 자연어 처리 분야에서 사용되는 정량적 평가 방법들을 이용하였다. 평가결과 마디 임베딩으로 생성한 곡이 가장 좋았으며 그 다음으로 음표 임베딩이 좋았다. 이는 본 논문에서 제안한 음표 임베딩과 마디 임베딩이 원-핫 인코딩보다 작곡가가 작곡한 곡과 유사한 곡을 생성한 것으로서 의의가 있다.

워드 임베딩 클러스터링을 활용한 리뷰 다중문서 요약기법 (Multi-Document Summarization Method of Reviews Using Word Embedding Clustering)

  • 이필원;황윤영;최종석;신용태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.535-540
    • /
    • 2021
  • 다중문서는 하나의 주제가 아닌 다양한 주제로 구성된 문서를 의미하며 대표적인 예로 온라인 리뷰가 있다. 온라인 리뷰는 정보량이 방대하기 때문에 요약하기 위한 여러 시도가 있었다. 그러나 기존의 요약모델을 통해 리뷰를 일괄적으로 요약할 경우 리뷰를 구성하고 있는 다양한 주제가 소실되는 문제가 발생한다. 따라서 본 논문에서는 주제의 손실을 최소화하며 리뷰를 요약하기 위한 기법을 제시한다. 제안하는 기법은 전처리, 중요도 평가, BERT를 활용한 임베딩 치환, 임베딩 클러스터링과 같은 과정을 통해 리뷰를 분류한다. 그리고 분류된 문장은 학습된 Transformer 요약모델을 통해 최종 요약을 생성한다. 제안하는 모델의 성능 평가는 기존의 요약모델인 seq2seq 모델과 ROUGE 스코어와 코사인 유사도를 평가하여 비교하였으며 기존의 요약모델과 비교하여 뛰어난 성능의 요약을 수행하였다.

생활방사선안전 관련 일반지식 측정도구 개발 및 실태분석 (An Analysis and Development of the Measurement on General Knowledge Related to the Safety of Living Radiation)

  • 최경호;서혜영
    • 융합정보논문지
    • /
    • 제12권4호
    • /
    • pp.205-211
    • /
    • 2022
  • 우리 인간의 주변에는 다양한 방사성 물질이 존재하고 있다. 최근 들어서는 삶의 질 향상과 함께 건강에 대한 관심도 높아지면서 방사선을 활용한 검사 등 또한 많아지고 있다. 본 연구에서는 이런 방사선을 생활 관련 방사선으로 정의하고, 이에 대한 지식을 측정할 수 있는 측정도구를 개발해 보았다. 그 결과 신뢰성이 확보되는 18개 문항을 개발하였다. 나아가 이를 이용하여 생활방사선 안전 관련 지식에 대한 실태를 분석해 보았다. 그 결과 방사선 관련 교육을 받은 그룹이 그렇지 않은 그룹에 비하여 통계적으로 유의하게 높은 점수를 받는 것으로 나타났다. 그리고 상관분석 및 회귀분석을 통해서 보았을 때 평소 안전 관련 관심도가 높을수록 생활방사선 안전 관련 지식이 높은 것으로 분석되었다. 이를 토대로 현대인들의 안전을 위하여 학교 교육과정에서 방사선 안전 관련 교수-학습이 이루어져할 필요성이 제안되었다.

RGB-D 영상을 이용한 Fusion RetinaNet 기반 얼굴 검출 방법 (Face Detection Method based Fusion RetinaNet using RGB-D Image)

  • 남은정;남충현;장경식
    • 한국정보통신학회논문지
    • /
    • 제26권4호
    • /
    • pp.519-525
    • /
    • 2022
  • 영상 내 사람의 얼굴을 검출하는 얼굴 검출 작업은 다양한 영상 처리 어플리케이션 내 전처리 또는 핵심 과정으로 사용되고 있다. 최근 딥러닝 기술의 발달로 높은 성능을 내고 있는 신경망 모델은 2차원 영상에 의존적이며, 카메라 품질이 떨어지거나, 얼굴의 초점을 제대로 잡지 못하는 등의 영상 내 노이즈가 발생할 경우, 제대로 얼굴을 검출하지 못할 수 있다. 본 논문에서는 2차원 영상의 의존성을 낮추기 위해 깊이 정보를 함께 사용하는 얼굴 검출 방법에 대해 제안한다. 제안하는 모델은 기존 공개된 얼굴 검출 데이터 셋을 이용하여 깊이 정보를 사전에 생성 및 전처리 과정을 거친 후 학습하였으며, 그 결과, 평균 정밀도 기준 FRN 모델은 89.16%로 87.95%의 성능을 보인 RetinaNet 모델보다 약 1.2% 정도의 성능이 향상되었음을 확인하였다.