• Title/Summary/Keyword: 학습 데이터

검색결과 6,438건 처리시간 0.034초

무인항공기 영상 및 딥러닝 기반 객체인식 알고리즘을 활용한 해안표착 폐기물 탐지 기법 연구 (Study on Detection Technique for Coastal Debris by using Unmanned Aerial Vehicle Remote Sensing and Object Detection Algorithm based on Deep Learning)

  • 박수호;김나경;정민지;황도현;엥흐자리갈 운자야;김보람;박미소;윤홍주;서원찬
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1209-1216
    • /
    • 2020
  • 본 연구에서는 무인항공기 원격탐사 기법과 딥러닝 기반 객체인식 알고리즘을 활용한 해안표착폐기물 탐지기법을 제안한다. 항공영상 내에 존재하는 해안표착폐기물을 탐지하기 위해 심층신경망 기반 객체 인식 알고리즘을 제안하였다. PET, 스티로폼, 기타 플라스틱의 3가지 클래스의 이미지 데이터셋으로 심층신경망 모델을 훈련시켰으며, 각 클래스별 탐지 정확도를 Darknet-53과 비교하였다. 이를 통해 해안표착 폐기물을 무인항공기를 통해 성상별 모니터링할 수 있었으며, 향후 본 연구에서 제안하는 방법이 적용될 경우 해변 전체에 대한 성상별 전수조사가 가능하며, 이를 통해 해양환경 감시 분야의 효율성 증대에 기여할 수 있을 것으로 판단된다.

다중속성 LSTM 모델 기반 TV 시청 패턴 분석 시스템 (TV Watching Pattern Analysis System based on Multi-Attribute LSTM Model)

  • 이종원;성미경;정회경
    • 한국정보통신학회논문지
    • /
    • 제25권4호
    • /
    • pp.537-542
    • /
    • 2021
  • 스마트 TV는 인터넷을 기반으로 기존의 TV에 비해 다양한 서비스와 정보를 제공하고 있다. 보다 개인화된 서비스나 정보를 제공하기 위해서는 사용자의 시청 패턴을 분석하고 이를 기반으로 맞춤형 서비스나 정보를 제공해야한다. 제안하는 시스템은 사용자의 TV 시청 패턴을 입력받고 이를 분석하여 사용자에게 맞춤형 정보로써 TV 프로그램이나 영화를 추천한다. 이를 위해 전처리기와 딥러닝(deep learning) 모델로 시스템을 구성하였다. 전처리기는 사용자가 시청한 TV 프로그램의 이름과 해당 TV 프로그램을 시청한 날짜, 시청한 시간 등을 입력하면 이를 정제한다. 그리고 정제된 데이터를 다중속성 LSTM 모델이 학습하고 예측을 수행하게 된다. 제안하는 시스템은 사용자에게 맞춤형 정보를 제공하는 시스템으로써 기존의 IoT 기술과 딥러닝 기술을 융합한 디지털 컨버전스(convergence)의 선도 기술이 될 것으로 사료된다.

Sparse and low-rank feature selection for multi-label learning

  • Lim, Hyunki
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.1-7
    • /
    • 2021
  • 본 논문에서는 다중 레이블 분류를 위한 특징 선별 기법을 제안한다. 기존 많은 특징 선별 기법들은 상호정보척도 등을 이용하여 특징과 레이블 사이의 연관성을 계산하여 특징을 선별하였다. 하지만 상호정보척도는 결합 확률을 요구하기 때문에 실제 전제 특징 집합에서 결합 확률을 계산하는 것은 어렵다. 따라서 소수의 특징만 계산이 가능하여 지역적 최적화만 가능하다는 단점을 가진다. 이런 지역적 최적화 문제를 피해, 주어진 특징 전체 공간에서 저랭크 공간을 구성하고, 희소성을 가진 특징들을 선별할 수 있는 특징 선별 기법을 제안한다. 이를 위해 뉴클리어 노름을 이용해 회귀 기반의 목적함수를 설계하였고, 이 목적 함수의 최적화 문제를 풀기 위한 경사하강법 방식의 알고리즘을 제안하였다. 4가지의 데이터와 3가지 다중 레이블 분류 성능을 기준으로 다중 레이블 분류 실험 결과를 통해 제안하는 방법론이 기존 특징 선별 기법보다 좋은 성능을 나타내는 것을 보였다. 또한 제안하는 목적함수의 파라미터 값 변화에도 성능 변화가 둔감한 것을 실험적인 결과로 확인하였다.

외래잡초 분류 : 합성곱 신경망 기반 계층적 구조 (Exotic Weeds Classification : Hierarchical Approach with Convolutional Neural Network)

  • 유광현;이재원;보호앙트롱;당탄부;후이트완녁;이주환;신도성;김진영
    • 한국정보기술학회논문지
    • /
    • 제17권12호
    • /
    • pp.81-92
    • /
    • 2019
  • 잡초는 농작물에 막대한 피해를 주는 주요한 개체이다. 잡초를 효과적으로 제거하기 위해서는 정확한 분류를 하고 제초제를 사용하여야 한다. 컴퓨팅 기술의 발전으로, 영상 기반의 기계학습 방법들이 이 분야에서 연구되고 있고, 특히 합성곱 신경망 기반의 모델들이 공공데이터에서 좋은 성능을 보이고 있다. 하지만 실제 응용단계에서는 많은 파라미터 수와 연산량 때문에 GPU와 같은 좋은 하드웨어 조건에서만 잘 작동된다. 본 논문은 계층적 구조 기반의 딥러닝 모델을 제안한다. 실험 결과, 제안된 모델은 적은 파라미터 수로 21개의 외래 잡초 종을 최대 97.2612%의 정확도로 성공적으로 분류하였다. 이를 통해 적은 수의 파라미터를 사용하는 제안된 모델은 네트워크 기반의 분류 서비스에서 적용될 수 있을 것으로 기대된다.

NTIS 시스템에서 딥러닝과 형태소 분석 기반의 대화형 검색 서비스 설계 및 구현 (Design and Implementation of Interactive Search Service based on Deep Learning and Morpheme Analysis in NTIS System)

  • 이종원;김태현;최광남
    • 융합정보논문지
    • /
    • 제10권12호
    • /
    • pp.9-14
    • /
    • 2020
  • 현재 NTIS(National Technology Information Service)는 인공지능 기술을 기반으로 대화형 검색 서비스를 구축하고 있다. 이용자의 검색 의도를 파악하고 과제정보를 제공하기 위해 딥러닝 모델과 형태소 분석기를 기반으로 대화형 검색 서비스를 구축한다. 딥러닝 모델은 NTIS와 대화형 검색 서비스를 활용할 때 적재되는 로그 데이터를 기반으로 학습을 진행하고 이용자의 검색 의도를 파악한다. 그리고 단계별 검색을 통해 과제정보를 제공한다. 검색 의도 파악은 예외처리를 용이하게 해주며 단계별 검색은 통합검색보다 쉽고 빠르게 원하는 정보를 얻을 수 있도록 한다. 향후연구로는 인공지능 기술이 접목된 성장형 대화형 검색 서비스로써 이용자에게 제공하는 정보의 범위를 확대해야 한다.

함수 단위 N-gram 비교를 통한 Spectre 공격 바이너리 식별 방법 (Detecting Spectre Malware Binary through Function Level N-gram Comparison)

  • 김문선;양희동;김광준;이만희
    • 정보보호학회논문지
    • /
    • 제30권6호
    • /
    • pp.1043-1052
    • /
    • 2020
  • 시그니처 기반 악성코드 탐지는 제로데이 취약점을 이용하거나 변형된 악성코드를 탐지하지 못하는 한계가 있다. 이를 극복하기 위해 N-gram을 이용하여 악성코드를 분류하는 연구들이 활발히 수행되고 있다. 기존 연구들은 높은 정확도로 악성코드를 분류할 수 있지만, Spectre와 같이 짧은 코드로 동작하는 악성코드는 식별하기 어렵다. 따라서 본 논문에서는 Spectre 공격 바이너리를 효과적으로 식별할 수 있도록 함수 단위 N-gram 비교 알고리즘을 제안한다. 본 알고리즘의 유효성을 판단하기 위해 165개의 정상 바이너리와 25개의 악성 바이너리에서 추출한 N-gram 데이터셋을 Random Forest 모델로 학습했다. 모델 성능 실험 결과, 25개의 Spectre 악성 함수의 바이너리를 99.99% 정확도로 식별했으며, f1-score는 92%로 나타났다.

동영상 데이터에서 조명 보정을 사용한 관심 영역의 획득 (Acquisition of Region of Interest through Illumination Correction in Dynamic Image Data)

  • 장석우
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.439-445
    • /
    • 2021
  • 영상 센서 및 소형 디스플레이의 발달로 가능해진 저가의 고속 카메라는 영상처리 및 패턴인식 분야에서 유용하게 활용될 수 있다. 본 논문에서는 약간의 시차를 두고 연속적으로 입력되는 고속의 영상으로부터 불규칙적인 조명을 보정한 다음, 조명이 보정된 영상으로부터 사람의 관심 영역인 노출된 피부 색상 영역을 획득하는 알고리즘을 소개한다. 본 연구에서는 먼저 받아들인 고속의 영상으로부터 비 균일하게 발생된 조명적인 효과를 프레임 블렌딩 기법을 사용하여 보정한다. 그런 다음, 사전에 반복적인 학습으로 생성된 타원형의 피부 색상 분포 모델을 적용하여 입력된 고속의 컬러 영상으로부터 관심 영역을 강인하게 획득한다. 실험 결과에서는 본 논문에서 제시된 접근 방법이 입력되는 컬러 영상으로부터 조명을 보정한 다음 관심 영역을 정확하게 획득한다는 것을 보여준다. 본 연구에서 제안된 알고리즘은 얼굴 인식 및 추적, 조명 보정 및 제거, 동영상 색인 및 검색 등과 같은 영상 인식과 연관된 다양한 종류의 실제적인 응용 프로그램에서 매우 유용하게 이용될 것으로 추측된다.

Framework for Efficient Web Page Prediction using Deep Learning

  • Kim, Kyung-Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권12호
    • /
    • pp.165-172
    • /
    • 2020
  • 웹에서 접근하는 정보의 폭발적인 증가에 따라 사용자의 다음 웹 페이지 사용을 예측하는 문제의 중요성이 증가되었다. 사용자의 다음 웹 페이지 접근을 예측하는 방법 중 하나가 딥 러닝 기법이다. 웹 페이지 예측 절차는 데이터 전처리 과정을 통해 웹 로그 정보들을 분석하고 딥 러닝 기법을 이용하여 분석된 웹 로그 결과를 가지고 사용자가 접근할 다음 웹 페이지를 예측한다. 본 논문에서는 웹 페이지 예측을 위한 효율적인 웹 로그 전처리 작업과 분석을 위해 딥 러닝 기법을 사용하는 웹 페이지 예측 프레임워크를 제안한다. 대용량 웹 로그 정보의 전처리 작업 속도를 높이기 위하여 Hadoop 기반 맵/리듀스(MapReduce) 프로그래밍 모델을 사용한다. 또한 웹 로그 정보의 전처리 결과를 이용한 학습과 예측을 위한 딥 러닝 기반 웹 예측 시스템을 제안한다. 실험을 통해 논문에서 제안한 방법이 기존의 방법과 비교하여 성능 개선이 있다는 사실을 보였고 아울러 다음 페이지 예측의 정확성을 보였다.

순환 신경망과 합성곱 신경망을 이용한 뉴스 기사 편향도 분석 (Analyzing Media Bias in News Articles Using RNN and CNN)

  • 오승빈;김현민;김승재
    • 한국정보통신학회논문지
    • /
    • 제24권8호
    • /
    • pp.999-1005
    • /
    • 2020
  • 오늘날의 검색 포털은 뉴스의 창구로서는 가장 큰 비율을 차지하지만, 중립성에 대해서는 의문이 제기되고 있다. 이는 포털 뉴스가 편향된 정보의 소비를 유도할 수 있기 때문이다. 본 논문은 뉴스 기사의 정치적 편향도를 딥러닝을 이용하여 측정하는 방법에 대하여 소개한다. 이는 기사를 비판적으로 바라보는 시각을 뉴스 독자에게 제공할 것이다. 구체적으로, 국회 회의록에서 추출한 키워드에 편향도를 부여하고, 이를 기반으로 기사의 편향도를 분석하여 머신러닝용 데이터를 구축하였다. 최종적으로 순환 신경망과 합성곱 신경망을 융합한 딥러닝을 통해 기사의 편향도를 계산하는 것을 목표로 하였다. 학습한 모델의 정확도를 분석한 결과 문장별 편향의 좌/우편향 판정은 95.6%의 정확도를 보였으나, 신문기사 전체에서는 46.0%의 정확도를 보였다. 이는 기존의 여러 편향성 연구와 다르게 특정 주제에 한정되지 않고 기사의 보수-진보 편향성을 분석할 수 있도록 한다.

반려동물 모니터링을 위한 YOLO 기반의 이동식 시스템 설계 (Design of YOLO-based Removable System for Pet Monitoring)

  • 이민혜;강준영;임순자
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.22-27
    • /
    • 2020
  • 최근 1인 가구의 증가로 반려동물을 키우는 가구가 많아짐에 따라, 주인의 부재 시에도 반려동물의 상태나 행동을 모니터링하는 시스템에 대한 필요성이 요구되고 있다. 가정용 CCTV를 이용한 반려동물의 모니터링에는 지역적 한계가 있어, 다수의 CCTV를 필요로 하거나 반려동물의 행동반경을 제한하는 방법을 사용하게 된다. 본 논문에서는 반려동물 모니터링의 지역적 한계를 해결하고자 딥러닝을 이용하여 고양이를 검출하고 추적하는 이동식 시스템을 제안한다. 객체 검출 신경망 모델의 하나인 YOLO(You Look Only Once)를 이용하여 데이터셋을 학습하고, 이를 기반으로 라즈베리파이에 적용하여 영상에서 검출된 객체를 추적한다. 라즈베리파이와 노트북을 무선 랜으로 연결하고 고양이의 움직임과 상태를 실시간으로 확인이 가능한 이동식 모니터링 시스템을 설계하였다.