DOI QR코드

DOI QR Code

Exotic Weeds Classification : Hierarchical Approach with Convolutional Neural Network

외래잡초 분류 : 합성곱 신경망 기반 계층적 구조

  • Received : 2019.11.01
  • Accepted : 2019.12.21
  • Published : 2019.12.31

Abstract

Weeds are a major object which is very harmful to crops. To remove the weeds effectively, we have to classify them accurately and use herbicides. As computing technology has developed, image-based machine learning methods have been studied in this field, specially convolutional neural network(CNN) based models have shown good performance in public image dataset. However, CNN with numerous training parameters and high computational amount. Thus, it works under high hardware condition of expensive GPUs in real application. To solve these problems, in this paper, a hierarchical architecture based deep-learning model is proposed. The experimental results show that the proposed model successfully classify 21 species of the exotic weeds. That is, the model achieve 97.2612% accuracy with a small number of parameters. Our proposed model with a few parameters is expected to be applicable to actual application of network based classification services.

잡초는 농작물에 막대한 피해를 주는 주요한 개체이다. 잡초를 효과적으로 제거하기 위해서는 정확한 분류를 하고 제초제를 사용하여야 한다. 컴퓨팅 기술의 발전으로, 영상 기반의 기계학습 방법들이 이 분야에서 연구되고 있고, 특히 합성곱 신경망 기반의 모델들이 공공데이터에서 좋은 성능을 보이고 있다. 하지만 실제 응용단계에서는 많은 파라미터 수와 연산량 때문에 GPU와 같은 좋은 하드웨어 조건에서만 잘 작동된다. 본 논문은 계층적 구조 기반의 딥러닝 모델을 제안한다. 실험 결과, 제안된 모델은 적은 파라미터 수로 21개의 외래 잡초 종을 최대 97.2612%의 정확도로 성공적으로 분류하였다. 이를 통해 적은 수의 파라미터를 사용하는 제안된 모델은 네트워크 기반의 분류 서비스에서 적용될 수 있을 것으로 기대된다.

Keywords

References

  1. T. W. Berge, A. H. Aastveit, and H. Fykse, "Evaluation of an algorithm for automatic detection of broad-leaved weeds in spring cereals", Precis. Agric, Vol. 9, pp. 391-405. Sep. 2008. https://doi.org/10.1007/s11119-008-9083-z
  2. Hamuda, Esmael, Martin Glavin, and Edward Jones, "A survey of image processing techniques for plant extraction and segmentation in the field" Computers and Electronics in Agriculture, Vol. 125, pp. 184-199, Jul. 2016 https://doi.org/10.1016/j.compag.2016.04.024
  3. M. Saber, W. S. Lee, T. F. Burks, J. K. Schueller, C. A. Chase, G. E. MacDonald, and G. A. Salvador, "Performance and Evaluation of Intra-Row Weeder Ultrasonic Plant Detection System and Pinch-Roller Weeding Mechanism for Vegetable Crops", Proceedings of International Meeting. American Society of Agricultural and Biological Engineers, pp. 1, 2015
  4. K. Thorp and L. Tian., "A review on remote sensing of weeds in agriculture", Precision Agriculture, Vol. 5, No. 5, pp. 477-508, Oct. 2004. https://doi.org/10.1007/s11119-004-5321-1
  5. S. Christensen, H. T. Sogaard, P. Kudsk, M. Norremark, I. Lund, E. Nadimi, and R. Jorgensen, "Site-specific weed control technologies", Weed Research, Vol. 49, No. 3, pp. 233-241, May 2009. https://doi.org/10.1111/j.1365-3180.2009.00696.x
  6. J. Hemming and T. Rath, "Computer-vision-based weed identification under field conditions using controlled lighting", Journal of Agricultural Engineering Research, Vol. 78, No. 3, pp. 233-243, Mar. 2001. https://doi.org/10.1006/jaer.2000.0639
  7. T. Beghin, J. S. Cope, P. Remagnino, and S. Barman, "Shape and texture based plant leaf classification", Advanced Concepts for Intelligent Vision Systems, Springer, pp. 345-353, Dec. 2010.
  8. D. M. Tax, M. Van Breukelen, R. P. Duin, and J. Kittler, "Combining multiple classifiers by averaging or by multiplying?", Pattern recognition, Vol. 33, No. 9, pp. 1475-1485, Sep. 2000. https://doi.org/10.1016/S0031-3203(99)00138-7
  9. M. Persson and B. Astrand, "Classification of crops and weeds extracted by active shape models", Biosystems Engineering, Vol. 100, No. 4, pp. 484-497, Aug. 2008. https://doi.org/10.1016/j.biosystemseng.2008.05.003
  10. N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J. Kress, I. C. Lopez, and J. V. Soares, "Leafsnap: A computer vision system for automatic plant species identification", In Computer Vision-ECCV, Springer, pp. 502-516, Oct. 2012.
  11. S. Haug, A. Michaels, P. Biber, and J. Ostermann, "Plant classification system for crop/weed discrimination without segmentation", Proceedings of IEEE Winter Conference on Applications of Computer Vision, pp. 1142-1149, Mar. 2014.
  12. M. Dyrmann, H. Karstoft and H. S. Midtiby, "Plant species classification using deep convolutional neural network", Biosystems Engineering, Vol. 151, pp. 72-80, Nov. 2016. https://doi.org/10.1016/j.biosystemseng.2016.08.024
  13. Vo Hoang Trong, Gwang-Hyun Yu, Nazeer Shahid, Seong-Min Hwang, and Jin-Young Kim, "Classification of weeds using Multimodal Convolutional Neural Networks", Proceedings of IEIE, pp. 368-371. Nov. 2018.
  14. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition", Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324, 1998. https://doi.org/10.1109/5.726791
  15. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification with deep convolutional neural networks", Advances in neural information processing systems, pp. 1097-1105, Dec. 2012.
  16. SIMONYAN, Karen and ZISSERMAN, Andrew, "Very deep convolutional networks for large-scale image recognition", arXiv preprint arXiv:1409.1556, Sep. 2014.
  17. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, ... and A. Rabinovich, "Going deeper with convolutions", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-9, Jun. 2015.
  18. K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, Jun. 2016
  19. B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, "Learning transferable architectures for scalable image recognition", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697-8710, Jun. 2018.
  20. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, and H. Adam, "Mobilenets: Efficient convolutional neural networks for mobile vision applications", arXiv preprint arXiv:1704.04861, Apr. 2017.
  21. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size", arXiv preprint arXiv:1602.07360, Nov. 2016.
  22. Sabour Sara, Frosst Nicholas, and Hinton Geoffrey E., "Dynamic routing between capsules", Advances in neural information processing systems, pp. 3856-3866, Dec. 2017.
  23. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, "Mobilenetv2: Inverted residuals and linear bottlenecks", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510-4520, Jun. 2018.
  24. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, "Inception-v4, inception-resnet and the impact of residual connections on learning", arXiv:1602.07261v2, Aug. 2016.
  25. J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255, Jun. 2009.
  26. He-Jin Yu and Chang-Hwan Son, "Recognizing Apple Leaf Diseases via Segmentation-Aware Deep Convolutional Neural Networks for Smart Farm", Journal of KIIT, Vol. 17, No. 6, pp. 73-83, Jun. 2019. https://doi.org/10.14801/jkiit.2019.17.6.73
  27. Jinso Kim and Jeongho Cho, "YOLO-based Real-Time Object Detection Scheme Combining RGB Image with LiDAR Point Cloud", Journal of KIIT, Vol. 17, No. 8, pp. 95-105, Aug. 2019.