Proceedings of the Korea Contents Association Conference
/
2012.05a
/
pp.201-202
/
2012
본 논문은 강의에서 생산되는 다양한 콘텐츠들을 교육자, 학습자가 수준별로 다양하게 활용하고, 이를 통해 학습자가 자기 주도적 학습을 할 수 있도록 시스템을 설계 한다. 이를 위해 학습 콘텐츠를 객체 기반화하며, LCMS를 도입하여 참여형 콘텐츠 관리 시스템을 설계한다. 본 연구에서 개발되는 시스템은 교수자와 학습자가 교육과정 종료이후에도 계속 활용할 수 있으며, 새로운 학습자들이 계속 참여하여 풍부한 콘텐츠를 구축하며 상호교류 하여 소셜 학습 네트워크(Social Learning Network)를 구축할 수 있도록 한다. 이는 평생학습이라는 사회적 요구에도 부응할 수 있을 것이다.
The Adaboost chooses a good set of features in rounds. On each round, it chooses the optimal feature and its threshold value by minimizing the weighted error of classification. The involved process of classification performs a hard decision. In this paper, we expand the process of classification to a soft fuzzy decision. We believe this expansion could allow some flexibility to the Adaboost algorithm as well as a good performance especially when the size of a training data set is not large enough. The typical Adaboost algorithm assigns a same weight to each training datum on the first round of a training process. We propose a new algorithm to assign different initial weights based on some statistical properties of involved features. In experimental results, we assess that the proposed method shows higher performance than the traditional one.
Seo, Kyeong-Deok;Koh, Seok-Joo;Shin, Jae-Won;Park, Hyung-Seok;Joe, Seong-Yoon;Kim, Kyeong-Rae
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.664-666
/
2020
데이터의 다양성은 학습에 따른 모델의 성능을 좌지우지하는 중요한 요소이다. 그렇기 때문에 많은 양의 데이터를 확보하는 것은 학습에 있어서 아주 중요하다. 하지만, 데이터를 수집하는 것은 시간과 비용이 많이 드는 단계 중 하나이다. 본 논문에서는 제한된 데이터를 가지고 이미지 처리를 거쳐 대량의 데이터로 증폭시켜 많은 양의 데이터를 확보하는 과정에 대해 제안한다. 가지고 있는 YOLOv4용 학습 데이터 셋을 활용하여 사용자로부터 입력받은 확대/축소 비율, 각도로 데이터를 변형하고, 이렇게 추가로 생성된 데이터 셋을 기존 학습 데이터 셋에 재포함시키는 소프트웨어를 개발하는 것을 목표로 한다. 구현된 소프트웨어로 증폭된 대량의 데이터 셋을 다시 원본 학습 데이터 셋에 추가하고, 같은 영상에 대해서 원본 데이터 셋만 학습시킨 경우의 객체 검출 결과와 증폭된 학습 데이터 셋이 포함된 데이터 셋의 경우의 객체 검출 결과를 비교하여 그 성능을 검증하고 분석하도록 한다.
The object detection is essential for identifying objects, location information, and user context-aware in the image. In this paper, we propose a robust object detection system. The System linearly transforms learning data obtained from the background images to Principal components. It organizes the Eigen-background with the selected Principal components which are able to discriminate between foreground and background. The Fuzzy-C-means (FCM) carries out clustering for images with inputs from the Eigen-background information and classifies them into objects and backgrounds. It used various patterns of backgrounds as learning data in order to implement a system applicable even to the changing environments, Our system was able to effectively detect partial movements of a human body, as well as to discriminate between objects and backgrounds removing noises and shadows without anyone frame image for fixed background.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.4
/
pp.43-49
/
2019
The wired and wireless Internet is a useful window to easily acquire various types of media data. On the other hand, the public can easily get the media data including the object to which the personal information is exposed, which is a social problem. In this paper, we propose a method to robustly detect a target object that has exposed personal information using a learning algorithm and effectively block the detected target object area. In the proposed method, only the target object containing the personal information is detected using a neural network-based learning algorithm. Then, a grid-like mosaic is created and overlapped on the target object area detected in the previous step, thereby effectively blocking the object area containing the personal information. Experimental results show that the proposed algorithm robustly detects the object area in which personal information is exposed and effectively blocks the detected area through mosaic processing. The object blocking method presented in this paper is expected to be useful in many applications related to computer vision.
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.347-348
/
2024
본 논문에서는 철도 구성요소 모니터링을 위한 효율적인 객체 분할 기법으로 사전학습된 SegFormer 모델의 적용을 제안하고, 객체 분할을 위해 보편적으로 사용되는 U-Net 모델과의 성능 비교 분석을 진행하였다. 철도의 주요 구성요소인 선로, 침목, 고정 장치, 배경을 분할할 수 있도록 라벨링된 데이터셋을 학습에 사용하였다. SegFormer 모델이 대조군인 U-Net보다 성능이 Jaccard Score 기준 5.29% 향상됨에 따라 Vision Transformer 기반의 모델이 기존 CNN 기반 모델의 이미지의 전역적인 문맥을 파악하기 상대적으로 어렵다는 한계를 극복하고, 철도 구성요소 객체 분할에 더욱 효율적인 모델임을 확인한다.
본 논문은 최근 일본에서 개발된 객체지향형 교육용 프로그래밍 언어(EPL: Educational Programming Language) '두리틀(Dolittle)'을 소개하고, 두리틀을 수학 교수-학습에 활용하기 위한 최초의 연구이다. 두리틀은 LOGO의 거북 그래픽스(Turtle Graphics)와 인크리멘탈(Incremental) 프로그래밍 방식, 즉각적인 피드백 등 많은 교육적 이점을 수용하고, 현대 프로그래밍의 고급 기능들을 프로토타입(Prototype) 방식을 통해 어린 학생들도 쉽게 이해할 수 있게 한 텍스트기반의 한글 교육용 프로그래밍 언어이다. 본 논문에서는 LOGO와 두리틀의 활용 비교를 통하여 두리틀을 소개하고, 두리틀을 이용한 기하와 함수의 교수-학습을 위하여 연구자가 고안한 기하판과 좌표판, 삼각함수판의 활용 방안을 제안하고, 그 교수-학습에서 발생하는 문제점을 해결하기 위한 몇 가지 아이디어를 제안하고자 한다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.208-210
/
2004
오늘날 인터넷상에서 존재하는 않은 정보들은 다양한 사용자의 개인 특성에 안게 새로운 정보의 지식으로 제공되어지기를 원한다. 기존의 연구는 단일 학술 기법을 통해 정보를 추출했으나 사용자에게 보다 의미 있는 정보를 제공하기 위해 다중 전략 학습 기법인 PMSL(Personalized Multi-Strategy Learning) 모듈 시스템을 제안하고자 한다. PMSL 모듈은 인터넷의 정보를 여과하여 필터링하고, 사용자 개인화의 키워드를 중심으로 연관된 객체를 추출한다. 이때 연관된 객체 추출시 대용량 데이터에서 시간적, 공간적면에서 효율적인 연관 탐색 기법인 Fp-Tree와 Fp-Growth 알고리즘을 적용시킴으로 결과의 효율성을 높이고자 하였으며, 연관규칙의 문제점을 보완하기 위해 가중치 기법인 TF*IDF 학습 기법을 적용시켰다. PMSL 모듈을 실행한 결과 기존 학습 기법에 비해 보다 더 의미 있는 연관 지식을 추출하게 되었다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.337-342
/
2022
본 논문은 한국어-영어 기반 영상-언어 모델인 VL-KE-T5를 소개한다. VL-KE-T5는 영상-텍스트 쌍으로 구성된 한국어와 영어 데이터 약 2천 3백만개를 이용하여 영상-언어 모델의 임베딩 벡터들을 정렬시킨 사전학습모델이며, 미세조정을 통하여 여러 영상-언어 작업에 활용할 할 수 있다. VL-KE-T5는 텍스트 기반 영상 검색 작업에서 높은 성능을 보였으나, 세세한 속성을 가진 여러 객체들의 나열이나 객체 간 관계를 포함한 텍스트 기반 영상 검색에서는 비교적 낮은 성능을 보였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.43-46
/
2021
최근 기계 임무수행에 사용되는 데이터양이 증가함에 따라 기계를 위한 효율적인 영상 압축방식의 필요성이 높아졌다. 기존의 비디오 코덱은 HVS (Human Visual System) 특성을 고려한 기술이기 때문에 부호화 과정에서 기계 임무수행에 필요하지 않은 정보를 효과적으로 제거할 수 없다. 반면 심층신경망 기반 압축네트워크의 경우, 원본 영상으로부터 기계 임무수행에 필수적인 데이터만을 추출하여 부호화 하도록 학습할 수 있는 장점이 있다. 본 논문에서는 압축 심층신경망과 기계 임무수행 네트워크로 구성되는 VCM (Video Coding for Machine) 프레임워크를 제안하고 학습에 의한 압축효율 향상을 검증한다. 이를 위해 압축 심층신경망을 객체탐지 임무수행 네트워크와 함께 학습시킨 결과, VVC (Versatile Video Coding) 대비 평균 61.16%의 BD-rate 감소가 확인되었다. 뿐만 아니라, 학습된 압축 심층신경망은 객체분할 임무수행에서도 VVC 대비 평균 58.43%의 BD-rate 감소를 보여 다중 기계 임무의 효율적 수행이 가능함을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.