• Title/Summary/Keyword: 학습 객체

Search Result 766, Processing Time 0.032 seconds

Participatory Contents Management System Design for Self-Directed Learning (자기주도 학습을 위한 참여형 콘텐츠 관리 시스템 설계)

  • Kang, hye-kyung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.201-202
    • /
    • 2012
  • 본 논문은 강의에서 생산되는 다양한 콘텐츠들을 교육자, 학습자가 수준별로 다양하게 활용하고, 이를 통해 학습자가 자기 주도적 학습을 할 수 있도록 시스템을 설계 한다. 이를 위해 학습 콘텐츠를 객체 기반화하며, LCMS를 도입하여 참여형 콘텐츠 관리 시스템을 설계한다. 본 연구에서 개발되는 시스템은 교수자와 학습자가 교육과정 종료이후에도 계속 활용할 수 있으며, 새로운 학습자들이 계속 참여하여 풍부한 콘텐츠를 구축하며 상호교류 하여 소셜 학습 네트워크(Social Learning Network)를 구축할 수 있도록 한다. 이는 평생학습이라는 사회적 요구에도 부응할 수 있을 것이다.

  • PDF

Object Detection using Fuzzy Adaboost (퍼지 Adaboost를 이용한 객체 검출)

  • Kim, Kisang;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.5
    • /
    • pp.104-112
    • /
    • 2016
  • The Adaboost chooses a good set of features in rounds. On each round, it chooses the optimal feature and its threshold value by minimizing the weighted error of classification. The involved process of classification performs a hard decision. In this paper, we expand the process of classification to a soft fuzzy decision. We believe this expansion could allow some flexibility to the Adaboost algorithm as well as a good performance especially when the size of a training data set is not large enough. The typical Adaboost algorithm assigns a same weight to each training datum on the first round of a training process. We propose a new algorithm to assign different initial weights based on some statistical properties of involved features. In experimental results, we assess that the proposed method shows higher performance than the traditional one.

Development of dataset amplification software (학습데이터 증폭 소프트웨어 개발)

  • Seo, Kyeong-Deok;Koh, Seok-Joo;Shin, Jae-Won;Park, Hyung-Seok;Joe, Seong-Yoon;Kim, Kyeong-Rae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.664-666
    • /
    • 2020
  • 데이터의 다양성은 학습에 따른 모델의 성능을 좌지우지하는 중요한 요소이다. 그렇기 때문에 많은 양의 데이터를 확보하는 것은 학습에 있어서 아주 중요하다. 하지만, 데이터를 수집하는 것은 시간과 비용이 많이 드는 단계 중 하나이다. 본 논문에서는 제한된 데이터를 가지고 이미지 처리를 거쳐 대량의 데이터로 증폭시켜 많은 양의 데이터를 확보하는 과정에 대해 제안한다. 가지고 있는 YOLOv4용 학습 데이터 셋을 활용하여 사용자로부터 입력받은 확대/축소 비율, 각도로 데이터를 변형하고, 이렇게 추가로 생성된 데이터 셋을 기존 학습 데이터 셋에 재포함시키는 소프트웨어를 개발하는 것을 목표로 한다. 구현된 소프트웨어로 증폭된 대량의 데이터 셋을 다시 원본 학습 데이터 셋에 추가하고, 같은 영상에 대해서 원본 데이터 셋만 학습시킨 경우의 객체 검출 결과와 증폭된 학습 데이터 셋이 포함된 데이터 셋의 경우의 객체 검출 결과를 비교하여 그 성능을 검증하고 분석하도록 한다.

  • PDF

An Object Detection System using Eigen-background and Clustering (Eigen-background와 Clustering을 이용한 객체 검출 시스템)

  • Jeon, Jae-Deok;Lee, Mi-Jeong;Kim, Jong-Ho;Kim, Sang-Kyoon;Kang, Byoung-Doo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • The object detection is essential for identifying objects, location information, and user context-aware in the image. In this paper, we propose a robust object detection system. The System linearly transforms learning data obtained from the background images to Principal components. It organizes the Eigen-background with the selected Principal components which are able to discriminate between foreground and background. The Fuzzy-C-means (FCM) carries out clustering for images with inputs from the Eigen-background information and classifies them into objects and backgrounds. It used various patterns of backgrounds as learning data in order to implement a system applicable even to the changing environments, Our system was able to effectively detect partial movements of a human body, as well as to discriminate between objects and backgrounds removing noises and shadows without anyone frame image for fixed background.

A Blocking Algorithm of a Target Object with Exposed Privacy Information (개인 정보가 노출된 목표 객체의 블로킹 알고리즘)

  • Jang, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.43-49
    • /
    • 2019
  • The wired and wireless Internet is a useful window to easily acquire various types of media data. On the other hand, the public can easily get the media data including the object to which the personal information is exposed, which is a social problem. In this paper, we propose a method to robustly detect a target object that has exposed personal information using a learning algorithm and effectively block the detected target object area. In the proposed method, only the target object containing the personal information is detected using a neural network-based learning algorithm. Then, a grid-like mosaic is created and overlapped on the target object area detected in the previous step, thereby effectively blocking the object area containing the personal information. Experimental results show that the proposed algorithm robustly detects the object area in which personal information is exposed and effectively blocks the detected area through mosaic processing. The object blocking method presented in this paper is expected to be useful in many applications related to computer vision.

The Comparison of Segmentation Performance between SegFormer and U-Net on Railway Components (SegFormer 및 U-Net의 철도 구성요소 객체 분할 성능 비교)

  • Jaehyun Lee;Changjoon Park;Namjung Kim;Junhwi Park;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.347-348
    • /
    • 2024
  • 본 논문에서는 철도 구성요소 모니터링을 위한 효율적인 객체 분할 기법으로 사전학습된 SegFormer 모델의 적용을 제안하고, 객체 분할을 위해 보편적으로 사용되는 U-Net 모델과의 성능 비교 분석을 진행하였다. 철도의 주요 구성요소인 선로, 침목, 고정 장치, 배경을 분할할 수 있도록 라벨링된 데이터셋을 학습에 사용하였다. SegFormer 모델이 대조군인 U-Net보다 성능이 Jaccard Score 기준 5.29% 향상됨에 따라 Vision Transformer 기반의 모델이 기존 CNN 기반 모델의 이미지의 전역적인 문맥을 파악하기 상대적으로 어렵다는 한계를 극복하고, 철도 구성요소 객체 분할에 더욱 효율적인 모델임을 확인한다.

  • PDF

객체지향형 교육용 프로그래밍 언어 '두리틀(Dolittle)'의 수학 교육-학습 활용 방안

  • Hwang, U-Hyeong;Kim, Gyeong-Mi
    • Communications of Mathematical Education
    • /
    • v.19 no.1 s.21
    • /
    • pp.215-240
    • /
    • 2005
  • 본 논문은 최근 일본에서 개발된 객체지향형 교육용 프로그래밍 언어(EPL: Educational Programming Language) '두리틀(Dolittle)'을 소개하고, 두리틀을 수학 교수-학습에 활용하기 위한 최초의 연구이다. 두리틀은 LOGO의 거북 그래픽스(Turtle Graphics)와 인크리멘탈(Incremental) 프로그래밍 방식, 즉각적인 피드백 등 많은 교육적 이점을 수용하고, 현대 프로그래밍의 고급 기능들을 프로토타입(Prototype) 방식을 통해 어린 학생들도 쉽게 이해할 수 있게 한 텍스트기반의 한글 교육용 프로그래밍 언어이다. 본 논문에서는 LOGO와 두리틀의 활용 비교를 통하여 두리틀을 소개하고, 두리틀을 이용한 기하와 함수의 교수-학습을 위하여 연구자가 고안한 기하판과 좌표판, 삼각함수판의 활용 방안을 제안하고, 그 교수-학습에서 발생하는 문제점을 해결하기 위한 몇 가지 아이디어를 제안하고자 한다.

  • PDF

Design and Implementation of PMSL for Information Retrieval (의미있는 정보 검색을 위한 개인화된 다중 전략 학습 모듈의 설계 및 구현)

  • 유수경;김교정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.208-210
    • /
    • 2004
  • 오늘날 인터넷상에서 존재하는 않은 정보들은 다양한 사용자의 개인 특성에 안게 새로운 정보의 지식으로 제공되어지기를 원한다. 기존의 연구는 단일 학술 기법을 통해 정보를 추출했으나 사용자에게 보다 의미 있는 정보를 제공하기 위해 다중 전략 학습 기법인 PMSL(Personalized Multi-Strategy Learning) 모듈 시스템을 제안하고자 한다. PMSL 모듈은 인터넷의 정보를 여과하여 필터링하고, 사용자 개인화의 키워드를 중심으로 연관된 객체를 추출한다. 이때 연관된 객체 추출시 대용량 데이터에서 시간적, 공간적면에서 효율적인 연관 탐색 기법인 Fp-Tree와 Fp-Growth 알고리즘을 적용시킴으로 결과의 효율성을 높이고자 하였으며, 연관규칙의 문제점을 보완하기 위해 가중치 기법인 TF*IDF 학습 기법을 적용시켰다. PMSL 모듈을 실행한 결과 기존 학습 기법에 비해 보다 더 의미 있는 연관 지식을 추출하게 되었다.

  • PDF

VL-KE-T5: A contrastive learning-based pre-trained model using image-language parallel data composed of Korean and English (VL-KE-T5: 한국어와 영어로 구성된 영상-언어 병렬 데이터를 이용한 대조학습 기반 사전학습모델 구축)

  • San Kim;Saim, Shin
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.337-342
    • /
    • 2022
  • 본 논문은 한국어-영어 기반 영상-언어 모델인 VL-KE-T5를 소개한다. VL-KE-T5는 영상-텍스트 쌍으로 구성된 한국어와 영어 데이터 약 2천 3백만개를 이용하여 영상-언어 모델의 임베딩 벡터들을 정렬시킨 사전학습모델이며, 미세조정을 통하여 여러 영상-언어 작업에 활용할 할 수 있다. VL-KE-T5는 텍스트 기반 영상 검색 작업에서 높은 성능을 보였으나, 세세한 속성을 가진 여러 객체들의 나열이나 객체 간 관계를 포함한 텍스트 기반 영상 검색에서는 비교적 낮은 성능을 보였다.

  • PDF

VCM based on Compression Neural Network for Multi-task (Multi-task 수행을 위한 압축 심층신경망 기반 VCM)

  • Lee, Haelim;Lee, Jooyoung;Cho, Seunghyun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.43-46
    • /
    • 2021
  • 최근 기계 임무수행에 사용되는 데이터양이 증가함에 따라 기계를 위한 효율적인 영상 압축방식의 필요성이 높아졌다. 기존의 비디오 코덱은 HVS (Human Visual System) 특성을 고려한 기술이기 때문에 부호화 과정에서 기계 임무수행에 필요하지 않은 정보를 효과적으로 제거할 수 없다. 반면 심층신경망 기반 압축네트워크의 경우, 원본 영상으로부터 기계 임무수행에 필수적인 데이터만을 추출하여 부호화 하도록 학습할 수 있는 장점이 있다. 본 논문에서는 압축 심층신경망과 기계 임무수행 네트워크로 구성되는 VCM (Video Coding for Machine) 프레임워크를 제안하고 학습에 의한 압축효율 향상을 검증한다. 이를 위해 압축 심층신경망을 객체탐지 임무수행 네트워크와 함께 학습시킨 결과, VVC (Versatile Video Coding) 대비 평균 61.16%의 BD-rate 감소가 확인되었다. 뿐만 아니라, 학습된 압축 심층신경망은 객체분할 임무수행에서도 VVC 대비 평균 58.43%의 BD-rate 감소를 보여 다중 기계 임무의 효율적 수행이 가능함을 확인할 수 있었다.

  • PDF