• Title/Summary/Keyword: 학습활용

Search Result 9,583, Processing Time 0.039 seconds

Design of an Intellectual Smart Mirror Appication helping Face Makeup (얼굴 메이크업을 도와주는 지능형 스마트 거울 앱의설계)

  • Oh, Sun Jin;Lee, Yoon Suk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.497-502
    • /
    • 2022
  • Information delivery among young generation has a distinct tendency to prefer visual to text as means of information distribution and sharing recently, and it is natural to distribute information through Youtube or one-man broadcasting on Internet. That is, young generation usually get their information through this kind of distribution procedure. Many young generation are also drastic and more aggressive for decorating themselves very uniquely. It tends to create personal characteristics freely through drastic expression and attempt of face makeup, hair styling and fashion coordination without distinction of sex. Especially, face makeup becomes an object of major concern among males nowadays, and female of course, then it is the major means to express their personality. In this study, to meet the demands of the times, we design and implement the intellectual smart mirror application that efficiently retrieves and recommends the related videos among Youtube or one-man broadcastings produced by famous professional makeup artists to implement the face makeup congruous with our face shape, hair color & style, skin tone, fashion color & style in order to create the face makeup that represent our characteristics. We also introduce the AI technique to provide optimal solution based on the learning of user's search patterns and facial features, and finally provide the detailed makeup face images to give the chance to get the makeup skill stage by stage.

Image Quality Analysis when applying DLIR Reconstruction Techniques in NECT CT (NECT CT에서 DLIR 재구성기법 적용 시 화질분석)

  • Yoon, Joon;Kim, Hyeon-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.387-394
    • /
    • 2022
  • 120 kVp FBP reconstruction image standard by using raw data after scanning by changing tube voltage among the NECK CT protocols that are broad applied in clinical practice using a human phantom including thyroid gland The usefulness of the DLIR reconstruction technique was investigated. As a result, CTDIvol decreased when the DLIR reconstruction technique was applied, and in particular, the image quality obtained under the same standard scanning conditions at a lower dose for ASIR-V and DLIR reconstruction was reached than when FBP was applied at the same kVp In addition, as a result of SNR and CNR analysis, the DLIR reconstructed image was analyzed with high SNR and CNR values, and SSIM analysis, the SSIM index of the 100 kVp, DLIR reconstructed image was measured to be close to 1, and it was analyzed that the similarity of the reconstructed image to the original image was high (p>0.05). If the results of this study are used to supplement clinical image evaluation and further develop an algorithm applicable to various anatomical structures, it is thought that it will be useful for clinical application as it is possible to maintain the image quality while lowering the examination dose.

Christian Education Aiming for Homo Creators (호모 크레토스를 지향하는 기독교교육)

  • Kim, Hyung Hee
    • Journal of Christian Education in Korea
    • /
    • v.70
    • /
    • pp.141-173
    • /
    • 2022
  • The purpose of this study is to illuminate depersonalization in the flow of technological revolution and to present a Christian SARAMDAUM education that aims for a new human image. It represents the Christian SARAMDAUM education that adapts to, mediates, and offers alternatives to the technological and human evolutionary flow of the machine age. The purpose of education for this purpose is to aim for 'Homo Creators', creative human beings presented as a new human image in the age of technological revolution. The educational goal is to nurture creative human beings through creative interpretation, creative integration between disciplines, and personal dialogue in the post-mechanical/ post-conventional paradigm. The content of the education is a conversation with the SARAMDAUM that consiliences the characteristics of post-machine and post-convention. The educational method utilizes Edu-Tech and AIED(Artificial Intelligence in Education) to realize systemic thinking and SARAMDAUM dialogue of technology. In addition, the composition of teachers and learners, educational environment and educational evaluation is presented. The significance of this study is that from the point of view of Christian education, the identity of human beings in the era of the technological revolution has been identified, and research on the creative image of the human being is newly attempted, and the direction of Christian SARAMDAUM education aimed at this is presented. This can be said to be a Christian education that emphasizes the essential characteristics of human beings while accommodating the era of technological revolution.

Trustworthy AI Framework for Malware Response (악성코드 대응을 위한 신뢰할 수 있는 AI 프레임워크)

  • Shin, Kyounga;Lee, Yunho;Bae, ByeongJu;Lee, Soohang;Hong, Heeju;Choi, Youngjin;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.1019-1034
    • /
    • 2022
  • Malware attacks become more prevalent in the hyper-connected society of the 4th industrial revolution. To respond to such malware, automation of malware detection using artificial intelligence technology is attracting attention as a new alternative. However, using artificial intelligence without collateral for its reliability poses greater risks and side effects. The EU and the United States are seeking ways to secure the reliability of artificial intelligence, and the government announced a reliable strategy for realizing artificial intelligence in 2021. The government's AI reliability has five attributes: Safety, Explainability, Transparency, Robustness and Fairness. We develop four elements of safety, explainable, transparent, and fairness, excluding robustness in the malware detection model. In particular, we demonstrated stable generalization performance, which is model accuracy, through the verification of external agencies, and developed focusing on explainability including transparency. The artificial intelligence model, of which learning is determined by changing data, requires life cycle management. As a result, demand for the MLops framework is increasing, which integrates data, model development, and service operations. EXE-executable malware and documented malware response services become data collector as well as service operation at the same time, and connect with data pipelines which obtain information for labeling and purification through external APIs. We have facilitated other security service associations or infrastructure scaling using cloud SaaS and standard APIs.

A Study on the Roles of Public Libraries as Community Public Spheres: Focused on the Case of Seongbuk Public Libraries in Seoul (지역사회 공론장으로서 공공도서관 역할에 대한 연구 - 서울 성북구립도서관 사례를 중심으로 -)

  • Yeon Ok Lee;Young Ah Kang
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.1
    • /
    • pp.139-160
    • /
    • 2023
  • The research was undertaken to explore the role of the public library as a public sphere. For this, the characteristics and meanings of the library's role were examined by analyzing the public spheres operated by the public library. Data were collected through interviews with librarians at Seongbuk Public Libraries in Seoul. Data collected were coded using NVivo for thematic analysis. As a result of the study, the characteristics and meanings of the library's role in the public sphere were identified in the following five types; 1) A place for meeting, communication and interaction of citizens, 2) Supporting citizen learning and growth through information services and discussion on the subject, 3) Expanding civic participation in the community and strengthen civic power, 4) Strengthening citizens' experience of democracy, 5) Improving citizens' perception of libraries and expanding the library's influence on citizens. In particular, it was found that information services enhance citizen interaction and spread of public opinion on the agenda. The results of this study can be used as a basis for developing and supporting libraries as community public spheres.

Open Domain Machine Reading Comprehension using InferSent (InferSent를 활용한 오픈 도메인 기계독해)

  • Jeong-Hoon, Kim;Jun-Yeong, Kim;Jun, Park;Sung-Wook, Park;Se-Hoon, Jung;Chun-Bo, Sim
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.89-96
    • /
    • 2022
  • An open domain machine reading comprehension is a model that adds a function to search paragraphs as there are no paragraphs related to a given question. Document searches have an issue of lower performance with a lot of documents despite abundant research with word frequency based TF-IDF. Paragraph selections also have an issue of not extracting paragraph contexts, including sentence characteristics accurately despite a lot of research with word-based embedding. Document reading comprehension has an issue of slow learning due to the growing number of parameters despite a lot of research on BERT. Trying to solve these three issues, this study used BM25 which considered even sentence length and InferSent to get sentence contexts, and proposed an open domain machine reading comprehension with ALBERT to reduce the number of parameters. An experiment was conducted with SQuAD1.1 datasets. BM25 recorded a higher performance of document research than TF-IDF by 3.2%. InferSent showed a higher performance in paragraph selection than Transformer by 0.9%. Finally, as the number of paragraphs increased in document comprehension, ALBERT was 0.4% higher in EM and 0.2% higher in F1.

Enhancing CT Image Quality Using Conditional Generative Adversarial Networks for Applying Post-mortem Computed Tomography in Forensic Pathology: A Phantom Study (사후전산화단층촬영의 법의병리학 분야 활용을 위한 조건부 적대적 생성 신경망을 이용한 CT 영상의 해상도 개선: 팬텀 연구)

  • Yebin Yoon;Jinhaeng Heo;Yeji Kim;Hyejin Jo;Yongsu Yoon
    • Journal of radiological science and technology
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • Post-mortem computed tomography (PMCT) is commonly employed in the field of forensic pathology. PMCT was mainly performed using a whole-body scan with a wide field of view (FOV), which lead to a decrease in spatial resolution due to the increased pixel size. This study aims to evaluate the potential for developing a super-resolution model based on conditional generative adversarial networks (CGAN) to enhance the image quality of CT. 1761 low-resolution images were obtained using a whole-body scan with a wide FOV of the head phantom, and 341 high-resolution images were obtained using the appropriate FOV for the head phantom. Of the 150 paired images in the total dataset, which were divided into training set (96 paired images) and validation set (54 paired images). Data augmentation was perform to improve the effectiveness of training by implementing rotations and flips. To evaluate the performance of the proposed model, we used the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and Deep Image Structure and Texture Similarity (DISTS). Obtained the PSNR, SSIM, and DISTS values of the entire image and the Medial orbital wall, the zygomatic arch, and the temporal bone, where fractures often occur during head trauma. The proposed method demonstrated improvements in values of PSNR by 13.14%, SSIM by 13.10% and DISTS by 45.45% when compared to low-resolution images. The image quality of the three areas where fractures commonly occur during head trauma has also improved compared to low-resolution images.

Analysis of Department of Home Economics Education Curriculum of College of Education through Keyword Network Analysis (키워드 네트워크 분석을 통한 사범대학 가정교육과 교육과정 분석)

  • Park, Jisoon;Ju, Sueun
    • Journal of Korean Home Economics Education Association
    • /
    • v.35 no.1
    • /
    • pp.105-124
    • /
    • 2023
  • The purpose of this study was to identify the characteristics of the contents included in the curriculum and 382 syllabi of the department of home economics education of College of Education in Korea and analyze the correlation by detailed area through the keyword network method. In order to analyze the home economics education curriculum and 382 syllabuses of a total of 11 universities, the frequency of keyword occurrence was analyzed using the KrKwic program, also the degree of connection between keywords and various centrality scales were calculated and visualized. The results of this study were as follows. First, as a result of analyzing the entire syllabi, keywords representing various fields such as family, secondary school, clothing, food, consumer, and design appeared evenly, and keywords related to teaching methods such as 'method', 'practice', 'change', and 'principle' were appeared. Those keywords showed high degree of connection and centrality. Second, in the detailed sectoral analysis, core keywords for each area appeared, and each subject were found to reflect the core keywords of the academic base. This study contributes to the conversion of curriculum of the department of home economics education to future-oriented and convergent curriculum.

Development of VR-based Crane Simulator using Training Server (트레이닝 서버를 이용한 VR 기반의 크레인 시뮬레이터 개발)

  • Wan-Jik Lee;Geon-Young Kim;Seok-Yeol Heo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.703-709
    • /
    • 2023
  • It is most desirable to train with a real crane in an environment similar to that of a port for crane operation training in charge of loading and unloading in a port, but it has time and space limitations and cost problems. In order to overcome these limitations, VR(Virtual Reality) based crane training programs and related devices are receiving a lot of attention. In this paper, we designed and implemented a VR-based harbor crane simulator operating on an HMD. The simulator developed in this paper consists of a crane simulator program that operates on the HMD, an IoT driving terminal that processes trainees' crane operation input, and a training server that stores trainees' training information. The simulator program provides VR-based crane training scenarios implemented with Unity3D, and the IoT driving terminal developed based on Arduino is composed of two controllers and transmits the user's driving operation to the HMD. In particular, the crane simulator in this paper uses a training server to create a database of environment setting values for each educator, progress and training time, and information on driving warning situations. Through the use of such a server, trainees can use the simulator in a more convenient environment and can expect improved educational effects by providing training information.

Fake News Detection Using CNN-based Sentiment Change Patterns (CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지)

  • Tae Won Lee;Ji Su Park;Jin Gon Shon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.179-188
    • /
    • 2023
  • Recently, fake news disguises the form of news content and appears whenever important events occur, causing social confusion. Accordingly, artificial intelligence technology is used as a research to detect fake news. Fake news detection approaches such as automatically recognizing and blocking fake news through natural language processing or detecting social media influencer accounts that spread false information by combining with network causal inference could be implemented through deep learning. However, fake news detection is classified as a difficult problem to solve among many natural language processing fields. Due to the variety of forms and expressions of fake news, the difficulty of feature extraction is high, and there are various limitations, such as that one feature may have different meanings depending on the category to which the news belongs. In this paper, emotional change patterns are presented as an additional identification criterion for detecting fake news. We propose a model with improved performance by applying a convolutional neural network to a fake news data set to perform analysis based on content characteristics and additionally analyze emotional change patterns. Sentimental polarity is calculated for the sentences constituting the news and the result value dependent on the sentence order can be obtained by applying long-term and short-term memory. This is defined as a pattern of emotional change and combined with the content characteristics of news to be used as an independent variable in the proposed model for fake news detection. We train the proposed model and comparison model by deep learning and conduct an experiment using a fake news data set to confirm that emotion change patterns can improve fake news detection performance.