Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.853-855
/
2021
본 연구는 회화문화재 속에 표현된 다양한 종류의 객체를 검출할 수 있는 딥러닝 모델생성을 위해 필요한 학습용 이미지 데이터셋 구축방안을 제안한다. 먼저 기존 동양화 기반의 회화문화재 이미지 데이터 및 객체 특징 분석을 진행하였고, 이를 바탕으로 Natural image에 Pose transfer 및 Style transfer를 적용한 새로운 방식의 회화문화재 이미지 데이터 생성 방법을 제안한다. 제안한 프레임워크를 통해 기존 문화재 분야에서 가지고 있던 제한된 데이터 구축문제를 극복하고, 검출모델 생성을 위한 대용량의 학습데이터 구축 가능성을 제시하였다.
정보 기술의 끊임없는 발전에 따라 광범위한 분야에서 방대한 양의 데이터가 발생하게 되면서 이를 처리하기 위한 빅 데이터에 대한 연구 및 교육이 활발히 진행되고 있다. 이를 위하여 데이터 분석 및 처리를 위한 고성능의 서버 및 분산 처리를 위한 다수의 컴퓨터가 필요하며 이는, 개인 혹은 저사양의 수업 환경에서 빅 데이터를 학습하는 데에 어려움을 겪게 한다. 때문에 가상 환경에서 원활한 빅 데이터 학습을 위한 클라우드 기반의 시스템이 필요하다. 이에 본 논문에서는, 빅 데이터 처리 기술의 하나인 Spark를 이용한 빅 데이터 플랫폼 구축에 대하여 기술한다.
단행본, 소설, 잡지, 만화 등 다양한 형태의 전자출판물에 공통적으로 적용 가능한 표현 기술과 콘텐츠 유통을 위한 패키징 기술로 구성된 표준인EPUB3가 국제표준기구인 ISO/IEC에서 국제표준으로 채택됨에 따라 시장 표준이 공적 표준으로 통합되는 현상이 전자출판 분야에서도 뚜렷이 나타나고 있다. 본고에서는 전자출판 표준인 EPUB3을 교과서 등 교육용 교재, 참고서, 학습서 등 교육 분야에 확대 적용하기 위하여 온라인 평가 서비스, 학습용 소프트웨어 연계, 교육용 메타데이터 활용 등 이질적인 기술 들 간의 융합이 어떻게 이루어져야 하는지에 대한 방향을 제시한다. 이러한 노력은 지난 2013년부터 국제 표준화 단체인 IDPF(International Digital Publishing Forum), IMS Global Learning Consortium, World Wide Web Consortium이 구성한 EDUPUB Alliance를 통해 구체화되고 있다. 따라서 향후 어떠한 구체적인 주제의 논의가 국내에서도 필요한지 알아본다. 또한 디지털 교과서와 학습 교재는 모바일 및 온라인 학습환경에서 다양하게 활용될 수 있으며, 학습자가 생성하는 학습 데이터를 체계적으로 수집하고 분석한다면 학습결과를 향상시키는데 큰 기여를 할 수 있을 것으로 기대한다.
Journal of Korea Society of Industrial Information Systems
/
v.27
no.4
/
pp.19-27
/
2022
In general, the performance of ML(Machine Learning) application is determined by various factors such as the type of ML model, the size of model (number of parameters), hyperparameters setting during the training, and training data. In particular, the recognition accuracy of ML may be deteriorated or experienced overfitting problem if the amount of dada used for training is insufficient. Existing studies focusing on image recognition have widely used open datasets for training and evaluating the proposed ML models. However, for specific applications where the sensor used, the target of recognition, and the recognition situation are different, it is necessary to build the dataset manually. In this case, the performance of ML largely depends on the quantity and quality of the data. In this paper, training data used for motion recognition application is augmented using the kernel density estimation algorithm which is a type of non-parametric estimation method. We then compare and analyze the recognition accuracy of a ML application by varying the number of original data, kernel types and augmentation rate used for data augmentation. Finally experimental results show that the recognition accuracy is improved by up to 14.31% when using the narrow bandwidth Tophat kernel.
Jeong, Min Jin;Jeong, Dabin;Lee, Kang Eun;Kim, Sungsuk;Yang, Sun Ok
Proceedings of the Korea Information Processing Society Conference
/
2019.10a
/
pp.63-65
/
2019
본 논문은 개발하고자 하는 기계학습 기반 한글 필기 인식 시스템의 첫 연구 결과를 담고 있다. 즉, 기계학습을 위해서는 학습용 및 테스트용 필기 데이터가 아주 많이 필요하므로, 이를 수집하고 전처리하는 방법을 제안하였다. 한글의 한 글자는 자음과 모음을 결합하여 생성되는데, 실제 만 개 이상의 글자가 생성될 수 있다. 따라서 각각의 글자 데이터를 수집하는 대신, 수집한 글자 데이터로부터 초성, 중성, 종성을 구분하여 최종적으로 자음, 모음 데이터로 저장하고자 한다. 아직 초기 연구이므로, 다양한 경우에 대한 분석이나 실험 결과는 없지만, 이를 활용하여 온라인 필기 인식 모델에 적용하여 인식 성능을 높이기 위한 추후 연구의 기반으로 활용하고자 한다.
Proceedings of the Korean Information Science Society Conference
/
2006.10c
/
pp.240-245
/
2006
본 논문에서는 의상에 대한 사용자 선호도를 찾아내는 기법에 대하여 기술한다. 의상에 대한 사용자 선호도를 찾기 위해서 의상 데이터에 대해 데이터 모델을 새롭게 제안한다. 이 데이터 모델을 기반으로 사용자의 의상관련 히스토리를 저장한다. 이렇게 저장된 히스토리 정보에 기계 학습 기법 중 최근 각광받고 있는 SVM 기법을 적용하여 사용자 선호도를 찾아내도록 하였다. 이 결과를 다른 학습 기법인 Naive Bayes 기법을 사용하여 의상에 대한 사용자 선호도를 검색한 성능과 비교하여 우리 모델이 더 좋다는 것을 확인하였다. 우리는 5명의 사용자에 대해서 동일한 취향을 갖는 사용자가 몇 명인지에 따라 A(모두 다름), B(2명), C(3명), D(4명), E(모두 같음) 형태별, 사용자별 1000건의 히스토리를 일정한 기준에 따라 생성했다. 그리고 이 중에서 900건을 학습용 데이터, 100건을 검증용 데이터로 선정하여 실험이 진행되었다.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.753-754
/
2018
최근 인공지능에 대한 관심이 증가하고 관련 연구가 활발히 진행됨에 따라, 기존 연구분야에도 이를 적용하고자 하는 시도가 증가하고 있다. 본 연구진도 한글 글씨를 인식하기 위해 기계학습을 적용하고자 하며, 그에 따라 본 연구에서는 초기 연구로서 사용자 필기 데이터를 수집하기 위한 안드로이드용 앱을 개발하였다. 최종 대상이 한글 공부를 시작하는 유아로 선정하였으므로, 그에 적절하게 학습 앱의 Activity를 구성하였다. 입력한 한글 데이터 분만 아니라 하나의 글자에 대한 초성, 중성, 종성별로 데이터를 별도로 수집하여 추후 활용할 수 있게 구성하였다. 즉, 학습과정에서 발생한 데이터는 이미지와 이벤트 두 가지 모두 저장하여 추후 최종 연구에 활용하고자 하였다.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.51-53
/
2000
기존의 진화 연산의 한계를 극복하기 위해서 탐색점 분포 학습 알고리즘(Estimation of Distribution Algorithm)이 부각되고 있다. 탐색점 분포 학습 알고리즘은 데이터의 분포를 파악하고, 파악된 분포를 이용해서 새로운 학습 데이터를 생성하는 일련의 과정을 통하여 최적화 문제를 해결하는 방법이다. 그런데, 기존의 탐색점 분포 학습 알고리즘들은 대부분 이진 벡터값을 가지는 최적화 문제들만을 대상으로 하고 있다. 본 논문에서는 비감독 확률 신경망 모델인 헬름홀츠 머신을 이용해서 데이터의 분포를 학습하여 연속 함수 최적화 문제를 해결하는 방법을 개발하였다. 테스트 함수들에 대해서 실수 표현형을 사용한 유전자 알고리즘과 결과를 비교하여 제안하는 방법의 우수성을 검증하였다.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.580-581
/
2024
고령화 사회에 접어들면서 황반 변성과 당뇨 망막 병증 등 시야결손을 동반하는 안구 질환의 발병률은 증가하지만 이러한 질환의 조기 발견에 인공지능을 접목시킨 연구는 부족한 실정이다. 본 논문은 안구 질환 자가 검사용 인공 신경망을 학습시키기 위한 데이터 베이스 구축 방법을 제안한다. MNIST와 CIFAR-10을 합성하여 중첩 이미지 데이터셋인 G-Dataset을 생성하였고, 7개의 인공신경망에 학습시켜 최종적으로 90% 이상의 정확도를 얻음으로 그 유효성을 입증하였다. G-Dataset을 안구 질환 자가 검사용 딥러닝 모델에 학습시켜 모바일 어플에 적용하면 사용자가 주기적인 검사를 통해 안구 질환을 조기에 진단하고 치료할 수 있을 것으로 기대된다.
Seo, Kyeong-Deok;Koh, Seok-Joo;Shin, Jae-Won;Park, Hyung-Seok;Joe, Seong-Yoon;Kim, Kyeong-Rae
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.664-666
/
2020
데이터의 다양성은 학습에 따른 모델의 성능을 좌지우지하는 중요한 요소이다. 그렇기 때문에 많은 양의 데이터를 확보하는 것은 학습에 있어서 아주 중요하다. 하지만, 데이터를 수집하는 것은 시간과 비용이 많이 드는 단계 중 하나이다. 본 논문에서는 제한된 데이터를 가지고 이미지 처리를 거쳐 대량의 데이터로 증폭시켜 많은 양의 데이터를 확보하는 과정에 대해 제안한다. 가지고 있는 YOLOv4용 학습 데이터 셋을 활용하여 사용자로부터 입력받은 확대/축소 비율, 각도로 데이터를 변형하고, 이렇게 추가로 생성된 데이터 셋을 기존 학습 데이터 셋에 재포함시키는 소프트웨어를 개발하는 것을 목표로 한다. 구현된 소프트웨어로 증폭된 대량의 데이터 셋을 다시 원본 학습 데이터 셋에 추가하고, 같은 영상에 대해서 원본 데이터 셋만 학습시킨 경우의 객체 검출 결과와 증폭된 학습 데이터 셋이 포함된 데이터 셋의 경우의 객체 검출 결과를 비교하여 그 성능을 검증하고 분석하도록 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.