• Title/Summary/Keyword: 하천 유사량

Search Result 518, Processing Time 0.029 seconds

Influences of the Construction of the Torrent Control Structure Using Customized Tetrapods on the Stream Water Ecology at Valley (맞춤형 테트라블록을 이용한 야계사방공작물이 계류생태계에 미치는 영향)

  • Park, Jae-Hyeon;Ma, Ho-Seop;Kim, Ki Heung
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.113-120
    • /
    • 2012
  • The purpose of this study was to find out the effect of a torrent control structure using customized tetrapods on the forest water quality, fishes, snials and streamwater ecology conservation and management. The study was conducted in the Honggye valley located in Sanchung-gun, Gyungsangnam-do, and stream water quality and streamwater ecology was compared before and during 2 years after construction of torrent control structure. After construction of the torrent control structure using customized tetrapods, pH of stream water didn't get out of the range of River water quality standard class I. After 2 years construction of the torrent control structure using customized tetrapods, Dissolved Oxygen concentration didn't change, and Electrical Conductivity measurements agreed well within the range of normal clean stream water quality. After construction of the torrent control structure using customized tetrapods, fishes and snials up and down stream movement didn't influence of the tetrapods dam. Stream water quality during 2 years after construction of the torrent control structure was similar to before construction. Therefore, it was find out that the torrent control structure didn't affect stream water quality and ecology.

Two-Dimension Hydraulic Analysis in the Andong-Imha Linked Reservoir System (안동-임하호 연결 시스템의 2차원 수리해석)

  • Lee, Heung-Soo;Park, Hyung-Seok;Chung, Se-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.205-205
    • /
    • 2012
  • 국내에서 새로운 댐 저수지 건설을 통한 수자원의 안정적인 확보는 어려운 여건에 있다. 따라서 수자원의 효율적인 확보, 댐 하류하천의 수질 개선, 신규댐 건설 대체 효과를 기대하기 위해 기존 댐 저수지의 연계운영이 중요하게 인식되고 있다. 본 연구에서는 다수의 댐 저수지 수체를 연계하여 모델을 통해 해석하고자 안동-임하호를 연결한 2차원 모델(CE-QUAL-W2)을 구축하고, 2002년과 2006년 수문사상을 재현하였으며, 수리해석을 실시하였다. 안동호의 좌안인 임동면 마리와 임하호의 우안인 망천리를 연결하고, EL. 140 m 위치에 길이 2 km, 직경 5.5 m로 콘크리트 터널을 연결하는 것으로 가정하였다. 관내 바닥 마찰계수와 미소 마찰손실 값은 0.05를 입력하였다. 저수지 실측수위와 모의수위를 시계열로 비교한 결과, 2002년과 2006년 안동호와 임하호에서 여름철 유입량 증가에 따른 수위 상승을 잘 반영하였고, 결정계수값($R^2$)이 모두 0.9953 이상으로 나타나 모델은 두 저수지 물수지 계산에 있어서 높은 신뢰도를 보였다. 2006년을 대상으로 안동호와 임하호의 댐 앞에서 수심별 수온의 실측값과 모의값을 비교한 결과, 안동호는 4월부터 성층이 진행되어 5월에 수온약층이 EL. 130 m에 형성되었다. 7월 홍수가 중층 밀도류를 형성하여 수온 성층구조를 교란하였고, 기존의 수온약층이 EL. 120 m 로 하강하였으며, 표층 EL. 145 m에 새로운 수온약층이 형성되는 2단 성층 구조를 보였다. 여름철 동안 이러한 현상은 지속되었고, 10월부터 대기기온 강하와 함께 수직혼합이 시작되었다. 수온예측 오차는 AME $0.336{\sim}1.806^{\circ}C$, RMSE $0.415{\sim}2.271^{\circ}C$의 범위로 실측값을 잘 반영하는 것으로 나타났다. 임하호도 안동호와 유사한 경향을 보였고, 모델은 두 저수지에서 전 기간에 걸쳐 모두 안정적으로 저수지 수온 성층현상을 모의하였다. 2002년 수문사상에서 안동-임하 연계 운영시 안동호의 평균 수위는 1.38 m 상승하였고, 임하호는 3.75 m 낮아지는 것으로 모의되었다. 수위변동에 따른 유동 유량은 임하호에서 안동호로 3억 6천 4백만 톤, 안동호에서 임하호로 2억 9천 1백만 톤으로 임하호에서 안동호로 유동한 유량이 높게 나타났다. 유역면적에 비해 저수용량이 작은 임하호의 경우 두 저수지간 유량의 이동에 따라서 저수용량의 증가로 인한 홍수 저감 효과가 있을 것으로 판단된다. 반면, 안동-임하 연계 운영시 임하호의 차가운 물이 안동호로 유입되는 경우, 안동호의 수온 성층구조에 영향을 주었다. 안동호의 경우는 단독운영시보다 높은 위치에 수온약층(EL. 140 m)이 형성되었으며, 임하호는 반대로 저수위가 낮아지면서 단독운영시보다 수온약층의 위치가 약간 낮아졌다. 이러한 결과는 두 저수지 연결시 안동호의 탁수와 수질 환경에 변화가 있을 수 있음을 시사한다.

  • PDF

Changes of Phytoplankton Community with Inflow of Sea Water in Gyoungpo Lake; Comparison between 1998 and 2012 (해수 유입량 변동으로 인한 경포호 식물플랑크톤 군집의 변화; 1998년과 2012년도의 비교)

  • Lee, Eun Joo;Lee, Kyu Song
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.spc
    • /
    • pp.48-56
    • /
    • 2014
  • Weekly changes of water environments and phytoplankton community with the salinity gradients were investigated at Gyoungpo Lake from April to November in 1998 and 2012. Underwater crossam in Gyoungpo Lake was removed in 2004. Thereafter, average salinity of Gyoungpo lake increased from 7.5 ppt in 1998 to 20 ppt in 2012. A total of 99 and 80 species of phytoplankton was observed from the sampled in 1998 and 2012, respectively. The number of common species during the 2 separate years was 40. Transparency, SS, $NO_3-N$ concentration and N/P ratio in 2012 were lower than those in 1998. During the period of water shortage (April, May) of 2012 transparency decreased due to decreased salinity and increased SS and Chl. a. Correlation coefficients between species and community scores of DCA ordination based on data matrix of the phytoplankton revealed larger variation among sampling seasons in 1998 than in 2012. The increase of seawater influx and conversion rates following the removal of the underwater crossbeam might explain such a differential variation. Gymnodium sp., Peridinium sp., Prorocentrum sp., Nitzschia longissima, Schroederia setigera, Lyngbya sp., Asterococcus limneticus, Asterococcus superbus and Cyclotella meneghiniana were found to well adapt at the high salinities in 2012. Comparatively, Asterrionella formosa, Nitzschia frustulum, Chlorella ellipsoidea, Scenedesmus bijuga and Scenedesmus ellipsoideus were observed at lower salinities in 1998. Two quite contrasting phytoplankton communities were found in the two seasons of a year, spring with limited precipitation and summer, the flood season.

Comparison of Microscopy and Pigment Analysis for Determination of Phytoplankton Community Composition: Application of CHEMTAX Program (식물플랑크톤 군집조성 파악을 위한 현미경관찰법과 지표색소분석법 비교 연구: CHEMTAX 프로그램 활용)

  • Kim, Dokyun;Choi, Jisoo;Oh, Hye-Ji;Chang, Kwang-Hyeon;Choi, Kwangsoon;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.303-314
    • /
    • 2021
  • To understand how to efficiently observe the biomass and community of phytoplankton, phytoplankton sampling was carried out from June to October 2019 at the Yeongju dam sediment control reservoir(YJ) and Bohyeonsan dam reservoir(BH1 and BH2). The results derived from microscopic observation, such as the conventional phytoplankton qualitative/quantitative analysis, and from the CHEMTAX method based on the pigments, were compared. The relative contribution of phytoplankton, calculated by the microscopy and CHEMTAX methods, showed a significant difference in all four classes: cryptophyta, chlorophyta, cyanobacteria, and diatoms. In addition, the correlation between the two observation methods was poor. This might be caused by methodological differences in microscopy that do not consider the varying cell sizes among phytoplankton species. In this study, by converting the cells into carbon, the slope between both carbon biomasses based on microscopy and CHEMTAX was improved close to the 1 : 1 line, and the y-intercept was closer to 0 for cryptophyta and diatoms. For cyanobacteria, the slope increased, the y-intercept decreased, and the plot approached 1 : 1 although the correlation coefficients were not improved in all classes. The present study suggests that application of CHEMTAX based on pigment analysis could be a possible approach to efficiently determine the relative carbon proportions of individual classes of phytoplankton community composition.

Effect of Algal Fraction to Particulate Organic Matter in the Upper Regions of a Brackish Lake Sihwa (시화호 상류 기수역에서 입자성유기물에 대한 조류영향)

  • Choi, Kwangsoon;Kim, Sea-Won;Kim, Dong-Sub;Heo, Woomyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.499-506
    • /
    • 2013
  • To estimate the effect of algae to particulate organic matter in the upper regions of brackish Lake Sihwa, temporal and spatial variations of particulate organic carbon (POC) and phytoplankton pigments (chlorophyll a; Chl-a, pheophytin-a; Pheo-a), and their relationships were studied at seven sites of the brackish regions from March to October 2005 and 2006. POC concentration varied from 1.0 to $76.6mgL^{-1}$ (mean $7.4mgL^{-1}$), with maximal concentrations occurring in the middle parts of the study area in spring of 2005 and 2006. Concentrations of Chl-a and Pheo-a varied from 1.3 to $942.9{\mu}gL^{-1}$ (mean $71.0{\mu}gL^{-1}$) and $1.4{\sim}1,545.5{\mu}gL^{-1}$ (mean $59.9{\mu}gL^{-1}$), respectively, and corresponded closely with variation in POC. During the study period Pheo-a concentration was 44.2% of total Chl-a, implying that non-living or inactive phytoplankton is also the important part of phytoplankton-derived POC in brackish regions of Lake Sihwa. From the positive linear relationships between POC and phytoplankton pigments (POC with Chl-a (r=0.93), total Chl-a (r=0.88), and Pheo-a (r=0.81)), it is suggested that phytoplankton was a significant component of POC in the upper regions of brackish Lake Sihwa. On the other hand, the ratios of POC/Chl-a and POC/total Chl-a (Chl-a+Pheo-a) were 82.9 and 35.9, respectively. The ratio of POC/total Chl-a is similar to those reported in previous studies, including 40~60 in estuaries. This study suggests that Pheo-a concentration is considered in estimation of POC concentration from phytoplankton pigments in aquatic systems with high content of Pheo-a, like an upper region of blackish Lake Sihwa.

Characteristics of Water Environment on Manun Reservoir (중산간 농업용 만운저수지의 수질환경특성)

  • Nam, Gui-Sook;Jang, Jeong-Ryeol;Lee, Gwang-Sik;Yoon, Keung-Sup;Lee, Sang-Joon
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.16-25
    • /
    • 2003
  • Manun Reservoir, located in Andong district has the capacity of 2 million tons in irrigation water supply with the drainage area of $23.8\;km^2$. Manun Reservoir is over fifty year old, and shallow in depth. The ratio of drainage area (DA) to reservoir surface area (SA) as an effective physical parameter on water quality was 56.1 and was higher than those of other agricultural reservoirs. The ratio of reservoir storage (ST) to SA in Manun Reservoir was 4.79, and the mean depth was below 8m. Both ratios of DS/SA, total area (TA)/ST and ST/SA in Manun Reservoir were relatively higher than those in other agricultural reservoir and natural lakes in Korea. These physical parameters in Manun Reservoir, however, had a eutropic potential significance. Average of COD, IN, and TP in Manun Reservoir were 11.1 mg/L 1.426 mg/L, 0.093 mg/L, respectively. In the inflow stream of Manun Reservoir, the TN ($1.426{\sim}3.809\;mg/L$) was higher than those in reservoir. Only Lyngbya spp. was dominant in phytoplankton for this study period and Gymnodinium spp., Peridinium spp., and Cryptomonas spp. were dominant in zooplankton. According to the Carlson's trophic status index, Mnnun Reservoir was eutrophic in 1996, 1997, and 1999, and hypertrophic in 1998.

Trophic State Index (TSI) and Empirical Models, Based on Water Quality Parameters, in Korean Reservoirs (우리나라 대형 인공호에서 영양상태 평가 및 수질 변수를 이용한 경험적 모델 구축)

  • Park, Hee-Jung;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.14-30
    • /
    • 2007
  • The purpose of this study was to evaluate trophic conditions of various Korean reservoirs using Trophic State Index (TSI) and predict the reservoir conditions by empirical models. The water quality dataset (2000, 2001) used here were obtained from the Ministry of Environment, Korea. The water quality, based on multi-parameters of dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), suspended solid (SS), Secchi depth (SD), chlorophyll-${\alpha}$ (CHL), and conductivity largely varied depending on the sampling watersheds and seasons. In general, trophic conditions declined along the longitudinal axis of headwater-to-the dam and the largest seasonal variations occurred during the summer monsoon of July-August. Major inputs of TP occurred during the monsoon (r=0.656, p=0.002) and this pattern was similar to solid dynamics of SS (r=0.678, p<0.001). Trophic parameters including CHL, TP, SD, and TN were employed to evaluate how the water systems varies with season. Trophic State Index (TSI, Carlson, 1977), based on TSI (CHL), TSI (TP), and TSI (SD), ranged from mesotrophic to eutrophic. However, the trophic state, based on TSI (TN), indicated eutrophic-hypereutrophic conditions in the entire reservoirs, regardless of the seasons, indicating a N-rich system. Overall, nutrient data showed that phosphorus was a primary factor regulating the trophic state. The relationships between CHL (eutrophication index) vs. trophic parameters (TN, TP, and SD) were analysed to develop empirical models which can predict the trophic status. Regression analyses of log-transformed seasonal CHL against TP showed that the value of $R^2$ was 0.31 (p=0.017) in the premonsoon but was 0.69 (p<0.001) during the postmonsoon, indicating a greater algal response to the phosphorus during the postmonsoon. In contrast, SD had reverse relation with TP, CHL during all season. TN had weak relations with CHL during all seasons. Overall, data suggest that TP seems to be a good predictor for algal biomass, estimated by CHL, as shown in the empirical models.

The Limnological Survey of a Coastal Lagoon in Korea (4); Lake Songji (동해안 석호의 육수학적 조사 (4); 송지호)

  • Kwon, Sang-Yong;Heo, Woo-Myung;Lee, Sang-Ha;Kim, Dong-Jin;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.4 s.114
    • /
    • pp.461-474
    • /
    • 2005
  • Physicochemical parameters, plankton community structure, and sediment were surveyed from 1988 to 2002, at two months interval, in a eutrophic coastal lagoon (Lake Songji, Korea). The lake basin is separated from the sea by a narrow sand dune, and a shallow sill divides the lake basin into two sub-basins. The stable stratifications and chemoclines are maintained all through the year at 1-2 m depth. DO was often very low (<1 $mgO_2\;{\cdot}\;L^{-1}$) in the monimolimnion. Secchi disc transparency was in the range of 0.5-2.7 m. TP, TN, and Chl. a concentration in the mixolimnion were 0.015-0.396 $mgP\;{\cdot}\;L^{-1}$), 0.223-3.521 $mgN\;{\cdot}\;L^{-1}$, and 0.5-129.8 mg ${\cdot}\;m^{-3}$, respectively. TSI was in the eutrophic range of 54 to 62. Sediment was composed of silt and coarse silt. COD, TP, and TN content of the sediment were 51.4-116.9 $mgO_2\;{\cdot}\;gdw^{-1}$, 0.04-1.46 $mgP\;{\cdot}\;gdw^{-1}$ and, 0.12-1.03 $mgN\;{\cdot}\;gdw^{-1}$, respectively. The 49 phytoplankton species were identified. The maximum phytoplankton abundance obscured the lake in September 2001 (max. density: 23,350 cells ${\cdot}\;mL^{-1}$. The Chlorophyte Schroederia judayi was dominant species in summer (max. density: 20,417 cells ${\cdot}\;mL^{-1}$). The lake showed unique limnological features of a brackish lagoon in respect to biological community, chemical characteristics, and physical phenomena.

Interannual and Seasonal Variations of Water Quality in Terms of Size Dimension on Multi-Purpose Korean Dam Reservoirs Along with the Characteristics of Longitudinal Gradients (우리나라 다목적댐 인공호들의 규모에 따른 연별.계절별 수질변이 및 상.하류간 종적구배 특성)

  • Han, Jeong-Ho;Lee, Ji-Yeoun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.319-337
    • /
    • 2010
  • Major objective of this study was to determine interannual and seasonal water quality along with characteristics of longitudinal gradients along the reservoir axis of the riverine zone (Rz)-to-lacustrine zone (Lz). Water quality dataset of five years during 2003~2007 used here were obtained from Ministry of Environment, Korea and ten physical, chemical and biological parameters were analyzed in the study. Similarity analysis, based on moropho-hydrological variables of reservoir surface area, watershed area, total inflow, and outflow, showed that the reservoirs were categorized as three groups of large-dam reservoirs (Chungju Reservoir, Daecheong Reservoir and Soyang Reservoir), mid-size reservoirs (Andong Reservoir, Yongdam Reservoir, Juam Reservoir and Hapcheon Reservoir), and small-size reservoirs (Hoengseong Reservoir and Buan Reservoir). According to the data comparison of high-flow year (2003) vs. lowflow year (2005), dissolved oxygen (DO), pH, biological oxygen demand (BOD), suspended solids (SS), total nitrogen (TN), total phosphorus (TP), chlorophyll-a (CHL) and electrical conductivity (EC) declined along the longitudinal axis of Rz to Lz and water transparency, based on Secchi depth (SD), increased along the axis. These results indicate that transparency was a function of Values of pH, DO, SS, SD, and EC at each site were greater in the low-flow year (2005) than the high-flow year (2003), whereas values of BOD, COD, TN, TP and CHL were greater in the high-flow year (2003). When values of TN, TP, CHL and SD in nine reservoirs were compared in the three zones of Rz, Tz, and Lz, values of TN, TP and CHL declined along longitudinal gradients and SD showed the opposite due to the sedimentation processes from the water column. Values of TN were not statistically correlated with TP values. The empirical linear models of TP-CHL and CHL-SD showed significant (p<0.05, $R^2$>0.04). In the mid-size reservoirs, the variation of CHL was explained ($R^2$=0.2401, p<0.0001, n=239) by the variation of TP. The affinities in the correlation analysis of mid-size reservoirs were greater in the CHL-SD model than any other empirical models, and the CHL-SD model had an inverse relations. In the meantime, water quality variations was evidently greater in Daecheong Reservoir than two reservoirs of Andong Reservoir and Hoengseong Reservoir as a result of large differences of water quality by long distance among Rz, Tz and Lz.

Effects of Nutrients and N/P Ratio Stoichiometry on Phytoplankton Growth in an Eutrophic Reservoir (부영양 저수지에서 식물플랑크톤 성장에 대한 제한영양염과 질소/인 비의 영향)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.36-46
    • /
    • 2004
  • We evaluated the effect of limiting nutrients and N/P ratio on the growth of phytoplankton in a small eutrophic reservoir from November 2002 to December 2003. Nutrient limitation was investigated seasonally using nutrient enrichment bioassay (NEB). DIN/DTP and TN/TP ratio (by weight) of the reservoir during the study period ranged 17${\sim}$187 and 13${\sim}$60, respectively. Most of nitrogen in the reservoir account for $NO_3$-N, but sharp increase of ammonia was evident during the spring season. Seasonal variation of dissolved inorganic phosphorus concentration was relatively small. DTP ranged 26.5${\sim}$10.1 ${\mu}g\;P\;L^{-1}$, and the highest and lowest concentration was observed in August and December, respectively. Chlorophyll a concentration ranged 28.8${\sim}$109.7 ${\mu}g\;L^{-1}$, and its temporal variation was similar to that of cell density of phytoplankton. Dominant phytoplankton species were Bacillariphyceae (Melosira varians) and Chlorophyceae (Dictyosphaerium puchellum) in Spring (March${\sim}$April). Cyanophyceae, such as Osillatoria spp., Microcystis spp., Aphanizomenon sp. dominated from May to the freezing time. TN/TP ratio ranged from 46 to 13 (Avg. 27${\pm}$6) from June to December when cyanobacteria (Microcystis spp.) dominated. p limitation for algal growth measured in all NEB experiments (17cases), while N limitation occurred in 8 out of 17 cases. The growth rates of phytoplankton slightly increased with decreasing of DIN/DTP ratio. Evident increase was observed in the N/P ratio of > 30, and it was sustained with DTP increase until 50 ${\mu}g\;P\;L^{-1}$. Under the same N/P mass ratio with the different N concentrations (0.07, 0.7and 3.5 mg N $L^{-1}$), Microcystis spp. showed the highest growth rate in the N/P ratio of< 1 with nitrogen concentration of 3.5 mg N $L^{-1}$). The responses of phytoplankton growth to phosphate addition were clearly greater with increase of N concentration. These results indicate that the higher nitrogen concentration in the water likely induce the stronger P-limitation on the phytoplankton growth, while nitrogen deficiency is not likely the case of nutrient limitation.