• Title/Summary/Keyword: 하천수질변화 모니터링

Search Result 125, Processing Time 0.027 seconds

A Study of Fish Community on Up and Downstream of Hwabuk Dam Under Construction in the Upper Wie Stream. (위천 상류에 건설 중인 화북댐 상 하류 어류군집에 관한 연구)

  • Seo, Jin-Won;Kim, Hee-Sung
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.260-269
    • /
    • 2009
  • Hwabuk Dam has been under construction to reduce flood damage in Nakdong River watershed and to supply stable water for middle area of Gyeongbuk Province. Therefore, fish investigation in up and downstream of the dam was conducted from 2004 to 2008 in order to determine any negative effect on fish community due to dam construction and to use as fundamental data for conserving species diversity and maintaining stream health. According to data analysis on water quality, temperature, dissolved oxygen, pH, suspended solids, and total E-coli had seasonal variation, but they did not significantly differ in sites. However, biological and chemical oxygen demand, chlorophyll-a, nitrogen, and phosphorus representing organic matter and nutrient concentration were higher in upper site and decreased to lower site so that they differed by site. Concentration of arsenic among the heavy metals was less than 0.05 mg $L^{-1}$, which is regulated for protection of human health in water quality standard, except for 0.092 mg $L^{-1}$ in June 2005. During the study period, the total number of fish caught from the 6 sites was 10,263 representing 7 families 19 species. Among them, dominant and subdominant species were Korean chub (Zacco koreanus, 62.5%) and Chinese minnow (Rhynchocypris oxycephalus, 10.6%) which inhabit mostly in mid and upper streams, Korea. Among the 19 species, Korean endemic species were 9 species (47.4%) including Korean slender gudgeon (Squalidus gracilis majimae), Korean dark sleeper (Odontobutis platycephala), and Korean shiner (Coreoleuciscus splendidus). There was several individuals of the $1^{st}$-class endangered species, Naktong nose loach (Koreocobitis nahtongensis), caught in 2005${\sim}$2007, and no introduced species of fish was found in entire sampling period. According to result of community analysis, dominance index decreased toward lower site, but diversity and richness indices increased toward lower site. The equation of length-weight relationship on the dominant species was TW=0.000003$(TL)^{3.2603}$. The parameter b in the equation was greater than 3.0 indicating good nutritional condition in the populations. Compared to populations of Korean chub in other streams, the population in Hwabuk Dam watershed had higher mean of condition factor by size indicating better growth rate. With fish fauna and multi-metric health assessment model in each sampling attempt, index of biotic integrity (IBI) was evaluated and it resulted mostly in good (26${\sim}$35) and excellent (36${\sim}$40) condition in all sites, and the mean of IBI was the highest in site 5. The results indicate that it is very important to study not only environmental impact assessment with fish composition but also stream health assessment in order to conserve healthy aquatic ecosystem.

Water Quality and Ecosystem Health Assessments in Urban Stream Ecosystems (도심하천 생태계에서의 수질 및 생태건강성 평가)

  • Kim, Hyun-Mac;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.311-322
    • /
    • 2008
  • The objectives of the study were to analyze chemical water quality and physical habitat characteristics in the urban streams (Miho and Gap streams) along with evaluations of fish community structures and ecosystem health, throughout fish composition and guild analyses during 2006$\sim$2007. Concentrations of BOD and COD averaged 3.5 and 5.7 mg L$^{-1}$, in the urban streams, while TN and TP averaged 5.1 mg L$^{-1}$ and 274 ${\mu}g$ L$^{-1}$, indicating an eutrophic state. Especially, organic pollution and eutrophication were most intense in the downstream reach of both streams. Total number of fish was 34 species in the both streams, and the most abundant species was Zacco platypus (32$\sim$42% of the total). In both streams, the relative abundance of sensitive species was low (23%) and tolerant and omnivores were high (45%, 52%), indicating an typical tolerance and trophic guilds of urban streams in Korea. According to multi-metric models of Stream Ecosystem Health Assessments (SEHA), model values were 19 and 24 in Miho Stream and Gap Stream, respectively. Habitat analysis showed that QHEI (Qulatitative Habitat Evaluation Index) values were 123 and 135 in the two streams, respectively. The minimum values in the SEHA and QHEI were observed in the both downstreams, and this was mainly attributed to chemical pollutions, as shown in the water quality parameters. The model values of SEHA were strongly correlated with conductivity (r=-0.530, p=0.016), BOD (r=-0.578, p< 0.01), COD (r=-0.603, p< 0.01), and nutrients (TN, TP: r>0.40, p<0.05). This model applied in this study seems to be a useful tool, which could reflect the chemical water quality in the urban streams. Overall, this study suggests that consistent ecological monitoring is required in the urban streams for the conservations along with ecological restorations in the degradated downstrems.

Thermal Effluent Effects of Domestic Sewage and Industrial Wastewater on the Water Quality of Three Small Streams (Eung, Chiljang and Buso) during the Winter Season, Korea (동계 저온기의 소하천 수질에 미치는 하·폐수의 온배수 영향)

  • Soon-Jin, Hwang;Jeon, Gyeonghye;Eum, Hyun Soo;Kim, Nan-Young;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.2
    • /
    • pp.238-253
    • /
    • 2017
  • The sewage and wastewater (SAW) are a well-known major source of eutrophication and greentide in freshwaters and also a potential source of thermal pollution; however, there were few approaches to thermal effluent of SAW in Korea. This study was performed to understand the behavioral dynamics of the thermal effluents and their effects on the water quality of the connected streams during winter season, considering domestic sewage, industrial wastewater and hot spring wastewater from December 2015 to February 2016. Sampling stations were selected the upstream, the outlet of SAW, and the downstream in each connected stream, and the water temperature change was monitored toward the downstream from the discharging point of SAW. The temperature effect and its range of SAW on the stream were dependent not only on the effluent temperature and quantity but also on the local air temperature, water temperature and stream discharge. The SAW effects on the stream water temperature were observed with temperature increase by $2.1{\sim}5.8^{\circ}C$ in the range of 1.0 to 5.5 km downstream. Temperature effect was the greatest in the hot spring wastewater despite of small amount of effluent. The SAW was not only related to temperature but also to the increase of organic matter and nutrients in the connected stream. The industrial wastewater effluent was discharged with high concentration of nitrogen, while the hot spring wastewater was high in both phosphorus and nitrogen. The difference between these cases was due to with and without chemical T-P treatment in the industrial and the hot spring wastewater, respectively. The chlorophyll-a content of the attached algae was high at the outlet of SAW and the downstream reach, mostly in eutrophic level. These ecological results were presumably due to the high water temperature and phosphorus concentration in the stream brought by the thermal effluents of SAW. These results suggest that high temperature of the SAW needs to be emphasized when evaluating its effects on the stream water quality (water temperature, fertility) through a systematized spatial and temporal investigation.

Development and Application of Multi-Functional Floating Wetland Island for Improving Water Quality (수질정화를 위한 다기능 인공식물섬의 개발과 적용)

  • Yoon, Younghan;Lim, Hyun Man;Kim, Weon Jae;Jung, Jin Hong;Park, Jae-Roh
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.221-230
    • /
    • 2016
  • Multi-functional floating wetland island (mFWI) was developed in order to prevent algal bloom and to improve water quality through several unit purification processes. A test bed was applied in the stagnant watershed in an urban area, from the summer to the winter season. For the advanced treatment, an artificial phosphorus adsorption/filtration medium was applied with micro-bubble generation, as well as water plants for nutrient removal. It appeared that the efficiency of chemical oxygen demand (COD) and total phosphorus (T-P) removal was higher in the warmer season (40.9%, 45.7%) than in the winter (15.9%, 20.0%), and the removal performance (suspended solid, chlorophyll a) in each process differs according to seasonal variation; micro-bubble performed better (33.1%, 39.2%) in the summer, and the P adsorption/filtration and water plants performed better (76.5%, 59.5%) in the winter season. From the results, it was understood that the mFWI performance was dependent upon the pollutant loads in different seasons and unit processes, and thus it requires continuous monitoring under various conditions to evaluate the functions. In addition, micro-bubbles helped prevent the formation of anaerobic zones in the lower part of the floating wetland. This resulted in the water circulation to form a new healthy aquatic ecosystem in the surrounding environment, which confirmed the positive influence of mFWI.

Changes of the Nutrients and Water Trophic States in Upo Wetland (우포늪의 영양염과 수질 영양 상태 변화)

  • Lee, Jung-Joon;Lee, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.418-427
    • /
    • 2010
  • In the four swamps of Jjokjibeol, Mokpo, Upo and Sajipo in the Upo wetland, the nitrogen nutrients, phosphorus nutrients and chl-$\alpha$ had been observed during the period from April 2005 to December 2009 on monthly basis. Based on the results, the fluctuations of trophic state in the Upo wetland were estimated. Measurements of the nitrogen nutrients such as $NO_3$-N, $NH_3$-N and T-N showed to be generally decreased in comparison with those in the precent studies. Yet the T-N was still considerably higher than the general concentration level of eutrophication and algal blooming. $PO_4$-P and T-P showed to have reduced considerably in comparison to precedent studies. However, T-P also turned out to be dissolved over the nutrient standard. Nitrogen nutrients and phosphorus nutrients were the lowest in Jjokjibeol in the Upo wetland. The chl-$\alpha$ concentrations were the highest at summer periods in Jjokjibeol and Mokpo. However, the highest at non-summer periods in Upo and Sajipo. Among the four swamps, Upo had the highest density on average of chl-$\alpha$, and Mokpo the lowest. Through TRIX (Trophic Index) analysis evaluating trophic state of the Upo wetland, all four swamps were estimated of poor water quality (eutrophication).

A Non-parametric Trend Analysis of Water Quality Using Water Environment Network Data in Nakdong River (낙동강수계 물환경측정망 자료를 이용한 비모수적 수질 경향 비교 및 분석)

  • Kim, Jungmin;Jeong, Hyungi;Kim, Hyeran;Kim, Yongseok;Yang, Deukseok
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.1
    • /
    • pp.61-77
    • /
    • 2020
  • In South Korea, major public waters have been systematic management under national level. Water environment network has been continuous monitoring for change of aquatic ecosystem, river and reservoir. In Water Quality Monitoring Networks, the data have been generally monitored Per eight days or month, while in Automatic Water Quality Monitoring Network the data have been monitored at daily intervals. Therefore, we were compared and analyzed water quality data between the networks using statistic method for same water quality item. Mann-kendall test results confirm that all points in Water Temperature (WT) and DO were not statistically significant. In particular, the result revealed that there is significant variation of TOC in the four different sites, TN in two different sites, TP in three different sites, WT in seven different sites, pH in two different sites between Water Quality Monitoring Network and Automatic Water Quality Monitoring Network. As a result firm LOWESS, TOC and pH clearly shows different trend. Among different sites, the water quality show the significantly positive correlations between at Sinam-Sangju2 and Namgang-Namgang4. Negative correlation significantly appeared in TP (ADD_Lower-AD1 site), TOC (DG-SG site), pH (GR-GR site), TP (JP-CN) and TN, TP, pH, EC, DO (GC-GC2-1 site).

A Study on the Real-Time Oil-Spill Monitoring Technology (실시간 기름유출 모니터링 기술에 관한 연구)

  • Yeom, Woo-jung;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.472-477
    • /
    • 2017
  • Oil spills cause a lot of damage to the environment. Oil destroys the water environment and ecosystem in a very short period of time once they are contaminated by it, it takes a lot of time to recover from the contamination and the cleaning process is very difficult. Therefore, oil detectors are greatly needed as they can monitor any oil spills over the sea, rivers, and lakes. There are two kinds of technology available for detecting oil, viz. the contact and non-contact types. The former is based on the use of the conductivity, capacitance and microwaves, while the latter employs infrared, UV, laser, optic and radar technologies. As there are also various hurdles in the measuring of oil on water, such as the presence of waves, refraction of light, temperature and saltiness, it is imperative to select the right oil detector which is appropriate for the specific environment. In this study, a contact type oil detector is developed, which can be used in oil related industries, such as refineries, petrochemical companies, and power generation stations. The detector is made up of the sensor module, which floats on the water, and the controller which processes the signal coming from the sensor module and displays it. It is designed in such a way that the existence of oil is detected through the sensor and the change in the permittivity is observed to determine the volume and type of spilled oil.

A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image (초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.845-859
    • /
    • 2020
  • Climate change and recent heat waves have drawn public attention toward other environmental issues, such as water pollution in the form of algal blooms, chemical leaks, and oil spills. Water pollution by the leakage of chemicals may severely affect human health as well as contaminate the air, water, and soil and cause discoloration or death of crops that come in contact with these chemicals. Chemicals that may spill into water streams are often colorless and water-soluble, which makes it difficult to determine whether the water is polluted using the naked eye. When a chemical spill occurs, it is usually detected through a simple contact detection device by installing sensors at locations where leakage is likely to occur. The drawback with the approach using contact detection sensors is that it relies heavily on the skill of field workers. Moreover, these sensors are installed at a limited number of locations, so spill detection is not possible in areas where they are not installed. Recently hyperspectral images have been used to identify land cover and vegetation and to determine water quality by analyzing the inherent spectral characteristics of these materials. While hyperspectral sensors can potentially be used to detect chemical substances, there is currently a lack of research on the detection of chemicals in water streams using hyperspectral sensors. Therefore, this study utilized remote sensing techniques and the latest sensor technology to overcome the limitations of contact detection technology in detecting the leakage of hazardous chemical into aquatic systems. In this study, we aimed to determine whether 18 types of hazardous chemicals could be individually classified using hyperspectral image. To this end, we obtained hyperspectral images of each chemical to establish a spectral library. We expect that future studies will expand the spectral library database for hazardous chemicals and that verification of its application in water streams will be conducted so that it can be applied to real-time monitoring to facilitate rapid detection and response when a chemical spill has occurred.

Water Quality Model Development for Loading Estimates from Paddy Field (논에서의 오염부하 예측을 위한 범용모형 개발)

  • Jeon, Ji-Hong;Hwang, Ha-Sun;Yoon, Kwang-Sik;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.344-355
    • /
    • 2003
  • Water quality model applicable paddy field was developed using field experiment during 1999 ${\sim}$ 2002. This model involves inputs from fertilization and sediment release as dirac delta function and continuous source function, respectively, and can simulate various processes such as ponded depth, surface drainage, total nitrogen concentration and total phosphorus concentration in a daily basis. The model was calibrated using data collected from field experiments which was irrigated with ground water and validated from field experiments which was irrigated with surface water. The nutrient concentration of surface water depended on the fertilization and dirac delta function can efficiently explain the valiance of nutrient concentration of surface water by fertilizer. As a result of calibration and validation, this model demonstrates good agreement. The model fit efficiencies ($R^2$) of ponded depth, surface concentration of TN and TP were 0.93,0.98 and 0.95, respectively for calibration, and those of TN and TP were 0.99 and 0.70, respectively for validation. We can apply lake and reservoir model to analysis paddy field considered with shallow ponded system, but it will need so many parameters and have much uncertainty. Fortunately, paddy field have a series of cultural practices yearly basis, such as irrigation-fertilization-forced drain-harvest with a similar time , so simple model may explain the mechanism for paddy field. Water quality model for paddy field developed in this study is simply, needs little parameters, but appeared high applicability to evaluate paddy filed drainage. We recommend this model to estimate nutrient loading from paddy field and establish best management practice.

Community Characteristics and Biological Quality Assessment on Benthic Macroinvertebrates of Bongseonsa Stream in Gwangneung Forest, South Korea (광릉숲 내 봉선사천의 저서성 대형무척추동물의 군집 특성 및 생물학적 하천평가)

  • Jung, Sang-Woo;Cho, Yong-Chan;Lee, Hwang-Goo
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.6
    • /
    • pp.508-519
    • /
    • 2017
  • There have been many studies on monitoring of biodiversity changes and preservation of Gwangneung Forest Biosphere Reserve (GFBR) in South Korea in recognition of the rare ecosystem that has been preserved for a long period. However, there are few studies on diversity and community characteristics of benthic macroinvertebrates as an indicator of stream health of GFBR. The purpose of this study was to assess the water quality of Bongseonsa Stream that penetrated through Gwangneung Forest and the nearby torrents by analyzing the benthic macroinvertebrates community during April to September 2016. The investigation collected a total of 114 species of benthic macroinvertebrates belonging to 56 families, 17 orders, 8 classes, and 5 phyla from the Bongseonsa Stream and Kwangneung Stream. Ephemeroptera and Trichoptera were the largest groups in species diversity with 30 species (32.3%) and 16 species (17.2%), respectively, and Tubificidae sp., Baetis fuscatus, Antocha KUa, and Cheumatopsyche brevilineata, which usually habit in contaminated streams, appeared frequently. Among the feeding function groups, the gatherers and hunters appeared relatively frequently, and the shredders and scrapers appeared frequently in the torrents. Among the habitat oriented groups, the clingers and burrower appeared more frequently and represented the microhabitats in the shallow areas. The result of the analysis of benthic macroinvertebrates community showed that the dominant index was $0.48{\pm}0.10$ in average while it was lowest with 0.33 in GS 8 of the Gwangneung Forest torrent and highest in BS 1 of Bongseonsa Stream. The diversity and richness indices were inversely proportional to the dominant index and were 2.53 and 4.22, respectively, in GS 8 where the dominant index was low. The result of the analysis of community stability showed that area I, which had high resistance and restoration, was high in Bongseonsa Stream while the area III, which had low resistance and restoration, was high in Gwangneung Forest, indicating that the water system in Gwangneung Forest had a wider distribution of specifies sensitive to agitation. The biological water quality assessment showed ESB of $50.88{\pm}17.69$, KSI of $1.11{\pm}0.57$, and BMI of $78.55{\pm}11.05$. GS 8 of Gwangneung Forest torrent was judged to be the highest priority protective water area with the best water environment and I class water quality with ESB of 63, KSI of 0.55, and BMI of 89.9. On the contrary, BS 1 of Bongseonsa Stream was judged to be the high priority improvement area that had the lowest water quality rating of III with ESB of 25, KSI of 2.13, and BMI of 62.7. Although the diversity of water beetle was higher in the water system of nearby Bongseonsa Stream than the water system inside the Gwangneung Forest, the annual community structure appeared to have distinct differences.